Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
1 1 ALAp 4 - O ESPAÇO VETORIAL (n,+,*) No ALAp1 denotamos por (n, +,*) ao conjunto n, dotado das operações usuais de soma, +, e de multiplicação por números reais, *. Algumas de suas propriedades básicas já foram trabalhadas nos capítulos precedentes. Todos os leitores provavelmente estarão habituados a representar, com operações em (3,+,*), os vetores que aparecem na física, tais como, posição, velocidade, força e campo elétrico. Neste sentido é natural dizer que o (n,+,*) é um Espaço Vetorial. A bem da verdade, o conceito de Espaço Vetorial é dos mais férteis em matemática e pode ser abordado com grande generalidade. No entanto, do ponto de vista da Álgebra Linear, sem dúvida o Espaço Vetorial (n,+,*) usual se destaca dos demais, não só por sua importância, mas também pelo fato que se alguém entende bem os conceitos básicos da sua estrutura algébrica, facilmente apreenderá a sua generalização para os demais espaços vetoriais de que trata a Álgebra Linear. Uma melhor compreensão da estrutura algébrica de (n,+,*) é essencial para podermos trabalhar adequadamente com as transformações lineares no n. Este capítulo e o próximo tratarão de explorar esta estrutura algébrica do n, dotado das operações de soma e multiplicação por números reais. O usual nos livros didáticos de Álgebra Linear é introduzir os conceitos que trataremos nestes dois capítulos num contexto bem mais abstrato, e tratar o n como um exemplo particular de Espaço Vetorial. Preferimos o caminho inverso e no capítulo 10 trataremos de generalizar as idéias que desenvolveremos nestes dois capítulos. 4.1 - SUBESPAÇO VETORIAL (SEV) Um subespaço vetorial do n é um subconjunto não vazio do n no qual se soma vetores sem sair dele, bem como se multiplica vetores por números reais, igualmente, sem sair dele. Começamos com um exemplo: Exemplo 4.1 - Seja V = {(2x1,x1) T : x1 } 2 . i - Veja que se x e y estiverem em W então x + y também estará em W, já que: x = 4 2 x+y W y = 2 1 W Ilustração geométrica: W é fechado com relação a soma 2 2 ii - Se for um número real e x estiver em W então x também estará em W, já que: 2 1 x x2 x x 1 1 1 i e ii caracterizam a reta W como um subespaço vetorial do 2. Formalmente, temos: Definição 4.1 Subespaço Vetorial (SEV) 1 Dizemos que W é um subespaço vetorial de n (SEV de n), caso: i - W esteja contido em n e 0 W ii - A soma de vetores de W e a multiplicação de vetores de W por n os permaneçam em W. Ou seja, W n é um SEV de n, caso: SEV.1 - x + y W , para todo x , y W SEV.2 - *x W , para todo e x W Em palavras, um SEV do n é um subconjunto não vazio e algebricamente fechado com relação às operações de soma de vetores e de multiplicação de vetores por números. Exemplo 4.2 - SEVs triviais do n V = n e W = {0} são subespaços vetoriais do n , para todo número natural n, já que: No caso V = n, a soma de dois vetores no Rn não tem como sair dele. Igualmente, a multiplicação de um vetor por um número real. No caso W ={0}, dados vetores x e y em W, então x = y =0. Segue que x + y = 0 permanece em W e que a multiplicação de x por qualquer número real continua 0, e portanto ainda em W. V = n e W = {0} são usualmente denominados subespaços triviais do n 1 A denominação subespaço vetorial torna-se mais significativa num contexto mais geral como o do capítulo X. Lá veremos que os subespaços vetoriais do n são, igualmente, espaços vetoriais que herdam a estrutura algébrica do n, num sentido bastante natural. Talvez este seja o único conceito no qual se adia uma interpretação importante por não se fazer uma abordagem mais geral logo de início. 3 3 Exemplo 4.3 - SEVs de 1 = No caso n=1, os vetores são os números reais e só existem os SEVs triviais. Para vê-lo, suponha que W é um SEV de , e que v 0 está em W. Se x é um número real qualquer, então x = v, onde = v x . Mas, por SEV.2, isto significa que x também está em W. Ou seja, todo número real x está em W. Vale dizer, se W {0}, então W = Observação 4.1 Uma definição equivalente para o conceito de SEV do n Veja que se W é um SEV do n, x, y e z estão em W e tomamos uma combinação linear qualquer x + y + z, SEV.2 nos garante que x, y e z também estão em W e SEV.1 nos permite concluir que x + y + z também está em W. Em resumo, Se W é SEV do n então toda combinação linear de vetores de W permanece em W. Vice versa, se W é um subconjunto do n para o qual vale que toda combinação linear de vetores de W permanece em W, então SEV.1 e SEV.2 obviamente também se verificam para W. Ou seja, neste caso W é SEV do n Em resumo, podemos juntar SEV.1 e SEV.2 numa única condição dizendo que W é SEV do n, caso todas as combinações lineares de vetores de W permaneçam em W. Exemplo 4.4 - Subespaços vetoriais de 2 As retas que contêm a origem (0,0) T são SEVs do 2 . O argumento para vê-lo é o mesmo do exemplo 4.1. Se W = { v | 0 }, representa a reta do 2 , formada pelos múltiplos de v 0, e x , y são pontos de W, então: SEV.1 - Existem números reais e , tais que x = v e y =v x + y = (+)v SEV.2 – Se é um número real, então x = (v)= () v Reciprocamente, os únicos SEVs não triviais do 2 são as retas que contêm a origem. Para verificá-lo, seja W {0} um SEV do 2 e seja x 0 um vetor não nulo de W. Neste caso, pela exigência em SEV.2, só há duas possibilidades: 0 v x = (x/v) v 4 4 W é a reta que contem os múltiplos de x. Existe algum vetor y em W, que não está na reta formada pelos múltiplos de x. Neste caso, vimos no exemplo 1.2.vii que, se v for um ponto qualquer do 2, então v é combinação linear de x e de y. Isto significa que todos os pontos do 2 têm que estar em W. Ou seja, W = 2 Vamos fazer a seguir uma argumentação mais algébrica, para ver a mesma coisa. Ou seja, supondo que um SEV W {0} do 2 não é uma reta, vamos verificar com argumentos algébricos que W = 2. Neste caso, existem vetores A (1) e A (2) , que não são múltiplos um do outro. Então matriz A = (A (1) A (2) ) não pode ter posto 1. Se este fosse o caso, Ax = 0 teria uma solução não trivial = (1 2), implicando: 1A (1) + 2A (2) = 0, com (1 2) 0 0se,AA 0se,AA 2 )1( 2 1)2( 1 )2( 1 2)1( Ou seja, se a matriz A tivesse posto 1, A (1) e A (2) estariam numa mesma reta que a origem (0 0 ) T , contradizendo nossa hipótese. Portanto, A tem posto 2, neste caso. Mas então o posto de A coincide com seu número de linhas. Pela observação 3.10.iv, isto significa que, se b é um vetor qualquer de 2 então Ax = b tem uma solução. Mas isto significa dizer que b é combinação linear das colunas de A. Ou seja, b se escreve como combinação linear de dois vetores de W. Pela observação 4.1, b está em W. Como b é qualquer vetor de 2, isto significa que 2 W e, portanto, 2 = W. Exemplo 4.5 Subespaços vetoriais de 3 4.5.i - W = { x 3: x1 + 2x2 - x3 = 0} é SEV do 3 Se x e y estão em W = { x 3: x1 + 2x2 - x3 = 0} 3 , e é um números real qualquer: SEV.1 Para checar que x + y = 33 22 11 yx yx yx está em W, veja que: (x + y)1 + 2(x + y)2 - (x + y)3 = (x1 + y1) + 2(x2 + y2) - (x3+ y3) = W x 0 {x| } v x y {y| } 5 5 = (x1 + 2x2 - x3) + (x1’ + 2x2’ - x3’) = 0 + 0 = 0 Isto significa que x + y está em W, desde que x e y estejam. SEV.2 Como x está em W, temos que x1 + 2x2 - x3 = 0. Portanto: 0 = *0 = (x1 + 2x2 - x3) = x1 + 2 x2 - x3. Mas esta é exatamente a condição que nos garante x em W 4.5.ii – Todas as retas que contêm a origem (0 0 0)T são SEVs de 3 . O argumento neste caso é inteiramente análogo ao do exemplo 4.4 (vide exercício 4.1.iv) 4.5.iii – Todos os planos que contêm a origem são SEVs de 3. Um argumento inteiramente análogo ao do exemplo 4.5.i nos garante isto (vide exercício 4.1.v). 4.5.iv – Reciprocamente, os únicos SEVs não triviais do 3 são as retas e os planos que contêm a origem ( 0 0 0 ) T . Também aquí poderíamos fazer uma demonstração mais geométrica deste fato, adaptando o que fizemos no exemplo 4.41 para o 2. Ao invés disto, vamos adaptar a segunda argumentação, mais algébrica, e que se generaliza com mais facilidade. A questão agora é supor que: W é um SEV do 3 que nem é {0}, nem é um dos que já apareceram em ii e iii. Neste caso, temos vetores A (1) , A (2) e A (3) em W, mas que não estão num mesmo plano que a origem. Nosso ponto inicial corresponde a mostrar que a matriz A = (A (1) A (2) A (3) ) tem Posto 3. Pedimos ao leitor, no exercício 4.5.iii, para verificar que, se Posto(A) < 3, então as colunas de A estão num mesmo plano que (0 0 0 ) T , contradizendo nossa afirmação em negrito, no começo deste parágrafo. Isto nos garante Posto(A) = 3. Igualmente ao que aconteceu no exemplo anterior, isto significa que, para todo b no 3, podemos resolver Ax = b. Portanto, todo b no 3 igualmente estará em W, por se escrever como combinação linear das colunas de A, supostamente em W. Exemplo 4.6 Subconjuntos do 2 que não são subespaços vetoriais O exemplo 4.4 nos descreve de uma maneira muito simples todos os subconjuntos de 2 que são SEVs. Ainda assim, nos parece instrutivo observar o que impede alguns subconjuntos do 2 de serem SEVs, a partir de outros pontos de vista (sem usar a lista de SEVs do 2 já disponível). 4.6.i - V = 2 e W é uma reta que não contem a origem, então W não é SEV do 2. v+u Observe que u e v estão em W, u mas que u+v não está em W. v W 6 6 4.6.ii - V = 2 e W = { ( x , x2 ) : x } Veja que se (x,x 2 ) está em W, então 2(x,x 2 ) = (2x,2x 2 ) não estará. 2v W v 4.6.iii - W = { x = (x1 x2) T | x1 0 } Observe que x = 1 2 está em W, mas (–1)*x = 1 2 não está. Observação 4.2 Se W é SEV do n então o vetor nulo tem que estar em W. Mesmo que não tivéssemos exigido inicialmente que 0 W, mas apenas que W não seja vazio, ao tomarmos x W, SEV.2 nos garantiria 0 = 0*x em W. Exercícios da seção 4.1 Exercício 4.1 - Verifique, em cada caso, que W é SEV do n correspondente: i - W = {x 4 | x1 - 2x2 - x4 = 0} 4 . ii – W = {Ax | x 2 } 3, onde A = 01 12 21 iii – W = { x 3 | Ax = 0 }, onde A = 112 121 iv – W é uma reta que contem a origem (0 0 0)T em 3 . v – W é um plano que contem a origem (0 0 0)T de 3. Exercício 4.2 - Verifique, em cada caso, que W não é um SEV do n correspondente: i - W = { x | Ax = ( 1 0 ) T } , onde A é a matriz do exercício 4.1.iii W x -x 7 7 ii - W = { x 4 | x1 x3 – x2x4 = 0} 4 Exercício 4.3 - Certo ou errado? Justifique. i - W = {(x1,x2) T : 2x1 - x2 = 0} é SEV do 2 ii - W = {(x1,x2) T : 2x1 - x2 = 1} é SEV do 2 iii - W = {(x1,x2,x3) T : 2x1 - x2 +2 x3 = 0 e x1 = x 3} é SEV do 3 iv - W = {(x1,x2) T : x1 2 + x2 2 1 } é SEV do 2 v - W = {(x1,x2) T : x1 2 + x2 2 = 0 } é SEV do 2 vi - W = {(x1,x2) T : x1 2 + x2 2 = -1 } é SEV do 2 vii - W = {(x1,x2) T : x1 2 - x2 2 = 0 } é SEV do 2 viii - W = {(x1,x2 ) T : x1 2 + (x2 – 1) 2 - 1 = 0 } é SEV do 2 ix - Se W1 e W2 são SEVs do n então W1W2 também é um SEV de V x- W = { (x1, x2): x1 0 } é um SEV do 2 Exercício 4.4 Considere o sistema linear 221 121 bx3x bx3x2 . Ache quais condições devem satisfazer b1 e b2 para que o conjunto de todas as soluções do sistema seja um SEV de 2 Exercício 4.5+ (novo) - Seja W {0} um SEV do 3 i – Mostre que se W contem um x 0 então toda a reta que contem x também está em W ii – Mostre que se W contem um x 0 e y que não é múltiplo de x, então contem o plano definido por x, y e 0 = (0 0 0) T . iii – Verifique que, se A é uma matriz 3x3 e Posto(A) < 3, então uma das colunas de A está no plano definido por 0 = ( 0 0 0 ) T e as demais colunas de A. (Sugestão: Veja que a existência de uma solução não-trivial para Ax = 0 garante que pelo menos uma das colunas de A é combinação linear das demais. ) 4.2 CONSTRUINDO SUBESPAÇOS VETORIAIS DO n As matrizes são muito úteis para representar SEVs do n. No exercício 4.1.ii foi solicitada a verificação que W = {Ax | x 2 } é SEV do 3, para uma dada matriz A. No exercício 4.1.iii, o conjunto das soluções de uma dada equação linear e homogênea Ax = 0 apareceu como SEV do 2. Nas duas subseções desta seção 4.2 vamos discutir estas duas formas de descrevermos os SEVs do n em termos de matrizes. Até o final deste capítulo veremos que todos os SEVs do n podem ser representados nestas duas formas, e que elas simplificam extraordinariamenmte a manipulação com os SEVs do n 4.2.1 Subespaço gerado por um conjunto de vetores No exemplo 4.4, vimos que 2 pode ser descrito como o conjunto de todas as combinações lineares de dois vetores não colineares. No exercício 4.1.ii você verificou que o conjunto definido por W = {Ax | x 2 }, 8 8 onde A = 01 12 21 , é um subespaço vetorial do 3. Vale dizer, que o conjunto de todas as combinações lineares das colunas A (1) e A (2) definem um subespaço vetorial do 3. Isto corresponde a uma maneira usual de descrever um subespaço vetorial do n: Definição 4.2 Dados vetores v1, v2, ...., vn , considere o conjunto W, formado por todas as combinações lineares possíveis destes n vetores: W = { c1v1 + c2v2 + ... + cnvn : ci , para i = 1,2,..., n} W é denominado subconjunto gerado por { v1 , v2 , ... ,vn } e denotado por Diz-se ainda que { v1 , v2 , ... ,vn } é um conjunto de geradores de W Se v1 = A (1) , v2 = A (2) , ... , vn = A (n) , ou seja, os geradores de W se escrevem como as colunas de uma matriz A, então W = Ger(A (1) , A (2) , ... , A (n) ) é denominado de espaço das colunas de A ( col(A) ). Exemplo 4. 7: Considere A = 11 20 11 . Neste caso: Col(A) = { x1 1 0 1 + x2 1 2 1 : x1 e x2 } = { Ax : x = 2 1 x x } Col(A T ) = { A T y : y = 3 2 1 y y y } = { y1 1 1 + y2 0 2 + y3 1 1 : y1 , y2 e y3 } = 2 Observe que Col(A) é um plano do 3, contem a origem (0,0,0)T , e é formado por todas as combinações lineares das colunas de A. Col(A T ) = 2 é gerado pelas combinações lineares das linhas de A, transpostas. Col (A) é um SEV do 3, e Col(AT) um SEV do 2 Da definição de Ax como uma combinação linear das colunas de A com pesos x1, , xn segue uma observação muito importante: W = Ger( v1 , v2 , ... , vn ) 9 9 Observação 4.3 O espaço das colunas de A também pode ser descrito como: Col(A) = [A (1) , A (2) , ... , A (n) ] = {Ax | xn} = Im(A) Ou seja, o espaço das colunas de A coincide com o espaço das imagens da função linear que a cada x do n associa Ax no m. Em particular, é muito comum encontrar-se, na literatura, a denominação Im(A) (espaço imagem de A), no lugar de Col(A). De fato, frequentemente é muito útil pensar em Col(A) como o conjunto imagem da aplicação x Ax . Por exemplo, para ver que Col(A) é um SEV do m, considere u e v em Col(A), bem como números reais e . Mas então podemos escrever u = Ax e v = Ay, para x e y no n. Usando a linearidade do produto matriz-vetor, isto significa que u + v = Ax + Ay = A(x +y) está em {Ax | xn} = Col(A) Ou seja, toda combinação linear de elementos no espaço das colunas de A, permanece nele. Pela observação 4.1 isto significa que Em particular, isto significa que o subconjunto gerado por n vetores do m é, de fato um SEV do m. Dada uma matriz A = Amxn , frequentemente estaremos interessados no espaço gerado pelas linhas de A, que denotamos por Lin(A). Por exemplo, para a matriz do exemplo 4.7, o espaço das linhas de A reside no 2, identificado como espaço de vetores linha (matrizes 1x2 ) e é formado pelas combinações lineares das linhas de A, ou seja: y1 A1 + y2A2 +y3A3 = y1 (1 1) + y2 ( 0 2) + y3 (1 -1) = y T A, onde y = 3 2 1 y y y Observe que enquanto vetores do n, o espaço das linhas de A é essencialmente o mesmo que o espaço das colunas de A T . Ou seja, os geradores de Col(A T) são os mesmos que os de Lin(A), “em pé”: Lin(A) = [ A1 , A2, A3 ] = [ (1 1) , ( 0 2) , (1 -1) ] = { y T A | y 3 } Col(A T ) = [ A1 T , A2 T , A3 T ] = 1 1 2 0 1 1 = { A T y | y 3 } Muitas vezes, é cômodo trabalhar com Lin(A) como formado por matrizes 1xn. No entanto, já que estamos identificando, como default, o m com as matrizes mx1, e para evitar ambiguidades na hora de multiplicar matrizes por vetores frequentemente estaremos manipulando com Col(A T ) no lugar de Lin(A). O espaço das colunas de A é um SEV do m 10 10 Esperamos que você se habitue a enxergar em Col(A T ), essencialmente, o espaço das linhas de A, escrito “em pé”. 4.2.2 Subespaço Nulo de uma matriz (Núcleo de A) No exercício 4.1.iii foi pedido que você verificasse que W = { x 3 | Ax = 0 } é um SEV do 3, para uma dada matriz 2x3. Observe ainda que o SEV obtido no exemplo 4.5.i pode ser descrito como o conjunto das soluções de Ax = 0, para A = ( 1 2 -1). Veja que os SEVs que apareciam nos exercícios 4.3.ii e 4.3.iv, podem facilmente ser vistos como conjunto das soluções dos sistemas de equações lineares e homogêneas Ax = 0. Usualmente ele é denominado núcleo de A, ou ainda Espaço Nulo de A. O denotamos por N(A). Se A é uma matriz mxn N(A) = { x n | Ax = 0} Na observação 3.6 vimos que combinações lineares de soluções de Ax = 0 também são soluções de Ax = 0. Pela observação 4.1, isto equivale a dizer que N(A) é um SEV do n Observação 4.4 Todo SEV na forma N(A) pode também ser escrito na forma Col(S) Do ALAp3 sabemos que todos as soluções de Ax = 0 podem ser descritas como combinações lineares das soluções canônicas. Ou seja, se S (1) , S (2) , , S(l) são todas as soluções canônicas de Ax = 0, então N(A)= {x | Ax = 0} = [S (1) , S (2) , , S(l) ] = Col(S) Exemplo 4.8 Seja A = 11000 20120 03121 . Observe que A já está na forma escada, suas variáveis livres são x3 e x5, e suas soluções canônicas são S (1) = 0 0 1 2/1 0 e S (2) = 1 1 0 1 5 . Isto significa que podemos descrever N(A) como o espaço das colunas da matriz S = (S (1) S (2) ). Simbolicamente temos a relação N(A) = Col(S). Desta forma, sempre podemos descrever o núcleo de uma matriz como espaço das colunas de outra matriz. Na seção 4.4 veremos que todo SEV do n pode ser descrito por um conjunto finito de geradores, ou seja como Col(A), para alguma matriz A. No exercício 4.61, veremos que vice-versa, sempre podemos 11 11 descrever o espaço das colunas de uma dada matriz como núcleo de alguma outra matriz. No capítulo 5, tal fato reaparecerá de forma bem mais transparente, no contexto de uma interpretação geométrica baseada na idéia de ortogonalidade entre SEVs. Em resumo, ao final deste capítulo e do próximo conseguiremos estabelecer que todos os SEVs do n podem ser descritos como Col(A) e como N(B) para matrizes A e B adequadas. Exercícios da subseção 4.2 Exercício 4.6 - Seja 11 12 A . Verifique que Col(A) = 2 e que N(A) = {0} Exercício 4.7 - Seja 11 11 A . Verifique que Col(A) e N(A) são retas em 2 Exercício 4.8 - Seja A = 111 101 . Verifique que Col(A) = 2 e que N(A) é uma reta em 3 Exercício 4.9 - Sejam v = 1 1 , w = 0 1 e A = 1 0 1 1 i - Verifique que 2 = Col(A) e que N(A) = {0} ii - Verifique que 2 = Col(AT ) e que N(AT) = {0} Exercício 4.10 - Sejam v = 1 1 e w = 2 2 e seja A = 1 2 1 2 i - Verifique que Col(A) = Ger( v ) = Ger(w) e que N(A) = Col( 2 1 ) ii - Verifique que Col(A T ) = Col( 2 1 ] e que N(A T ) = Col( 1 1 ) Exercício 4.11 - Sejam u = 1 0 1 , v = 1 1 1 , w = 0 1 3 e A = 1 1 0 0 1 1 1 1 3 i - Verifique que 3 = Col(A) e que N(A) = {0} ii - Verifique que 3 = Col(AT) e que N(AT) = {0} Exercício 4.12 - Seja A = 010 101 110 011 I - Verifique que Posto(A) = 3 e conclua que N(A) = {0} 12 12 Ii – Verifique que Col(A) 4 Exercício 4.13 - Certo ou errado? Justifique: i - Se A é uma matriz 2x3 então Col(A) Col(AT) ii - Se A = 00 10 então Col(A) = Col(A T ) iii - Se A = 12 21 então Col(A) = Col(A T ) iv - Se A é uma matriz 2x2 e Col(A) = 2 então A é invertível. v - Se A’ é obtida de A substituindo a primeira linha pelo dobro dela, então Col(A’) = Col(A) vi - Se A’ é obtida de A substituindo a primeira linha de A pela sua soma com a segunda, então Col(A’) = Col(A) vii - Se Col(A) = 2 , então Col(AT) = Col(A). (Sugestão: Veja a observação 3.14) viii - Sejam A=Amxn e b no n . Ax = b tem solução sss b estiver em Col(A) ix – Se A’ é obtida de A substituindo uma de suas linhas por um múltiplo dela, então Lin(A) = Lin(A’) Exercício 4.14 - Considere a matriz A = 2132 4321 . Ache uma matriz S tal que o núcleo de A coincida com o espaço das colunas de S. Exercício 4.15 - Certo ou Errado? Justifique: i - Se A é uma matriz 2x3 então N (A) N (AT) ii - Se A é uma matriz 2x2 então N (A) = N (A T ) iii - Se A é uma matriz 2x2 e N (A) = {0} então N (A T ) = {0} (Sugestão: Vide exerc. 4.13.vii) 4.3 Formando SEVs a partir de outros Há duas maneiras importantes de formar SEVs, a partir de outros SEVs. As descrevemos nas duas subseções a seguir. 4.3.1 Soma de Subespaços Exemplo 4.9 Sejam W1 =Col( (2,- 1, 1) T ) e W2 = Col( ( 1, 2,-1 ) T ) Observe que o subconjunto do 3 formado pela união de W1 e W2 é um par de retas que se intersectam na origem. Portanto, não faz parte da nossa lista de SEVs do 3, explicitada na observação 4.5. Observe que, se quisermos um SEV do 3 que contenha os dois subsepaços, êle forçosamente deverá conter todas as somas de vetores em W1 com vetores em W2. 13 13 Definamos, como a soma de W1 e W2 , o conjunto formado pelas somas de vetores em W1 com vetores em W2, ou seja: W1 + W2 = { w1 +w2 , w1 W1 e w2 W2} W1 + W2 resulta ser neste caso o plano que contem W1 e W2 . Em particular, é também um SEV do 3 . Observação 4.5 Sejam W1 e W2 dois SEVs do n . É fácil (vide exerc. 4.18+) ver que: W1 + W2 = { w1 +w2 | w1 W1 e w2 W2} é um SEV de n Diz-se que W1 + W2 é o subespaço soma de W1 e W2 Analogamente, se W1 , W2, ... , Wn são SEVs de V, então (subespaço soma de W1 W2 , ... , Wn) Exemplo 4.10 - Sejam U = Col(A), V = Col(B) e W = Col(C), onde A = 12 34 43 21 , B = 1 0 1 0 e C= 21 11 00 01 Se x U + V + W, então x é da forma x = A + B + C = 12 34 43 21 2 1 + 1 0 1 0 + 21 11 00 01 2 1 = W = W1 + W2 + ... + Wn = { w1 + w2 + ... + wn : wi Wi} é um SEV de V 14 14 = 1 3 4 2 4 2 3 1 21 1 0 1 0 + 2 1 0 0 1 1 0 1 21 = 2 1 2 1 21114 11032 00143 01021 Mas isto significa que x está no espaço das colunas de uma matriz formada com as colunas de A, B e C, nesta ordem. Observação 4.6 - O que aconteceu no exemplo acima funciona em geral. Ou seja, se U = Col(A) e V = Col(B), então U + V = Col(A B), onde (A B) representa uma matriz cujas colunas são as colunas de A seguida das colunas de B. O argumento para vê-lo é essencialmente o mesmo do exemplo anterior (vide exercício 4.16.ii) Definição 4.3: Sejam W1 e W2 subespaços do m . Dizemos que V m é soma direta de W1 e W2 se: a. V = W1 + W2 b. W1 W2 = { 0} Denota-se a soma direta por V = W1 W2 Analogamente, diz-se que V é soma direta de W1 , W2, ..., Wn, caso V= W1+ W2 + + Wn e se a interseção de cada Wi com a soma dos demais SEVs for {0}. Veja que no exemplo 4.9, a soma de W1 e W2 era uma soma direta, uma vez que W1 W2 ={0}, naquele caso. Já a soma de U, V e W do exemplo 4.10 não pode ser uma soma direta. A razão é que Col(A) + Col(C) = 4 (vide exercício 4.18.iii). Neste caso, Col(B) (Col(A) + Col(C) ) = Col(B) 4 = Col(B) {0} Observação 4.7 A propriedade importante que distingue uma soma direta U = V W, introduzida pela condição W1 W2 = { 0} é que para cada vetor z U existe um único x V e um único y W tais que z = x + y . Para vê-lo, suponha z V W e que v se escreve de duas maneiras como: z = x + y = x’ + y’ , com x , x’ V e y, y’ em W Mas então x – x’ = y – y’ estará em V W (por quê?). Como estamos assumindo que V W = {0}, segue que x – x’ = y – y’ = 0 x = x’ e y = y’. 15 15 Exercícios da subseção 4.3.1 Exercício 4.16 - Sejam W1 = [(1,0,1) T , (0,1,1) T } , W2 = [(1,1,2) T ] e W3 = [(0,1,-1) T ] e W4 = W2 + W3. Verifique que: i - W1 é um plano no 3 ii - W2 uma reta contida em W1 e W1 + W2 = W1 iii -W3 é uma reta que não está contida em W1 , W1 + W3 = 3 e W1 + W4 = 3 Exercício 4.17 - Sejam W1 = [ (1,1) T ] e W2 = [(1,-1)] T . Verifique que 2 = W1 + W2. Exercício 4.18 + – i - Mostre que o conjunto W= U + V, formado pela soma de dois SEVs do n, também é um SEV do n ii - Verifique que, se U = Col(A) e V = Col(B), então U + V = Col(A B), iii - Considere A e C como no exemplo 4.10 e verifique que Col(A) + Col(C) = 4 Exercício 4.19 - Sejam v1 , v2 , v3 ,v4 e v5 vetores do n . Considere também os SEVs W1 = [v1 , v2 , v3] e W2 = [v4 , v5] . Mostre que W1 + W2 = [v1, v2 , v3, v4, v5] Exercício 4.20 + (18+ - mudou) - Suponha que V = W1 W2 W3. Mostre que para cada v V existe um único w1 W1 e um único w2 W2 e um único w3 W3 tais que v = w1 + w2 + w3 Exercício 4.21 i - Verifique que no exercício 4.17, obtivemos:2 = W1 W2 ii - Verifique que no exercício 4.16, obtivemos 3 = W1 W3 , iii - Verifique que no exercício 4.16, obtivemos 3 = W1 + W4 , mas que esta não é uma soma direta entre subespaços. Exercício 4.22 - Certo ou Errado. Justifique: i - W = { (x,y) | y = |x| é um SEV do 2 ii - A união de dois SEVs do 2 também é SEV do 2 iii - Se W = Col(S) e W’ = Col(S’), então W+W’ é o subespaço das colunas da matriz (S S’), formada pelas colunas de S e de S’. iv – Se V = W + W´, W =[A(1) , A(2), A(3)], W’=[A(4), A(5)] e a matriz A = (A(1) A(2) A(3) A(4) A(5)) tem posto 5, então V = WW’ . v – W + W’ é o “menor” dos SEVs que contêm W e W’, no sentido que, se W, W’ e W’’ são SEVs do n tais que W W’’ e W’ W’’ então W+W’ também está contido em W’’. 4.3.2 Interseção de SEVs também é SEV Exemplo 4.11: Veja que W1 = N( (3 -1 1) ) e W2 = N( (1 -1 4) ) são dois planos no 3 contendo a origem . Como os pontos de W1 são definidos por satisfazerem à equação (3 -1 1) x = 0, e os de W2 por satisfazerem (1 -1 4) x = 0. Neste caso os pontos de W1 W2 devem satisfazer simultaneamente às duas equações . Ou seja: 16 16 Em geral, se W1 e W2 forem SEVs de n , então W1 W2 também é. Demonstração: Observe que, se w1 e w2 estão em W1W2 , 1 e 2 são números reais, então: i - Se W1 é um SEV de V, como w1 e w2 estão em W1 1w1 + 2 w2 também estará em W1 ii - Se W2 é um SEV de V, como w1 e w2 estão em W2 1w1 + 2 w2 também estará em W2 i e ii são suficientes para garantir que W1 W2 também é SEV de V Exercícios da subseção 4.3.2 Exercício 4.23 - Sejam W1 = {(x1,x2,x3) T | 2x1 - x2 - x3 = 0} e W2 = {(x1,x2,x3) T | x1 + x2 + x3 = 0} i - Desenhe um esboço dos planos W1 e W2 no 3 bem como de sua interseção W1W2 ii - Verifique que W1 W2 é um SEV de 3 e ache um gerador de W1W2 Exercício 4.24 - Certo ou Errado? Justifique: i - Se V e W são SEVs do 3 então VW ii - Se V e W são SEVs não triviais do 2 e diferentes entre si, então V W = {0} iii - Se V e W são SEVs não triviais do 3 e diferentes entre si, então V W = {0} iv - Se V e W são SEVs do n, diferentes entre si, então V W V + W W1 W2= N ( 411 113 ) é uma reta que também contem a origem. 17 17 Exercício 4.25 - Sejam A = m 1 A A e B = m 1 B B matrizes, particionadas em linhas e com o mesmo número de colunas. Verifique que N(A) N(B) = N( B A ) = N ( m 1 m 1 B B A A ) Exercício 4.26 - Sejam A = 1210 0101 e B = 1110 1311 . Mostre que N(A) N(B) tem um gerador não nulo e ache-o 4.3 MATRIZES LINHA-EQUIVALENTES E ESPAÇO DAS LINHAS Na subseção 4.3.1 vamos relacionar o método da eliminação de Gauss com a idéia de subespaço das linhas de uma matriz. Na seção 4.3.2 (opcional), usamos a informação obtida em 4.3.1 para demonstrar a unicidade da forma escada de uma matriz (teorema-chave 3.2). 4.3.1 Simplificando a representação do Espaço das Linhas Uma observação muito útil nas computações em Álgebra Linear consiste no fato que os espaços das linhas de duas matrizes linha-equivalentes entre si são os mesmos. Isto é, dada uma matriz A, com m linhas e n colunas, considere o seu espaço das linhas: V = Ger( A1 , A2 , ... , Am ) = Lin(A) Dem: Considere A A A Am 1 2 . Basta mostrar que se realizarmos uma operação elementar nas linhas de A, seu espaço das linhas não se altera. Há tres tipos de operações elementares a considerar: Se à é uma matriz linha equivalente a A então V = Lin(Ã) 18 18 O1 - Substituir a linha Aj por Aj - Ai, com i j. Chamemos de ~ ~ ~ ~ A A A Am 1 2 à nova matriz. Queremos mostrar que V = [ A1 , A2 , ... , Am ] e ~V = [Ã1 , Ã2 , ... , Ãm ] são iguais. Para verificarmos que V ~ V , começamos observando que Aj = (Aj - A1) + A1 = Ãj + Ã1 ~V . Veja que as demais linhas de A são iguais às de à e portanto igualmente estarão em ~ V . Isto significa que todo um conjunto de geradores de V pertence a ~ V . Deixamos como exercício para o leitor verificar que se V for um SEV gerado por n vetores do m e cada um destes geradores estiver num segundo SEV ~ V , então V ~ V (vide exercício 4.27+). Do mesmo jeito, se mostra que ~V V, uma vez que A é obtida de à substituindo- se a linha Ãj por Ãj + Ã1. O2 - A segunda operação elementar realizada nas linhas de uma matriz consiste em trocar linhas. Obviamente isto não altera o espaço das linhas. O3 - É fácil ver que, substituir uma das linhas de uma matriz por um múltiplo não nulo dela mesma, igualmente não altera seu espaço das linhas (vide exercício 4.13.ix) Exemplo 4.12 - Seja V = [A1 , A2 , A3] = [ (1,0,2) , (2,1,0) , ( 1,1,-2)] Veja que A = A A A 1 2 3 = 1 0 2 2 1 0 1 1 2 é linha-equivalente a U = 1 0 2 0 1 4 0 0 0 . Portanto, V = [(1,0,2), (0,1,-4)]. Em particular, isto nos permite dizer que V é um plano no 3, coisa que não é visível diretamente se escrevemos V = [A1 , A2 , A3]. Exercícios da subseção 4.3.1 Exercício 4.27 - Mostre que se V = [v1, v2, , vm] n e cada vi estiver num segundo SEV ~V , então V ~V Exercício 4.28 - Em cada caso, encontre uma matriz na forma escada, linha-equivalente a A, e conclua daí se o espaço das linhas de A é uma reta, um plano ou todo o 3. i - A = 1 1 0 1 0 1 0 1 3 ; ii - A = 1 2 1 1 0 1 3 3 3 ; iii - A = 1 2 3 2 4 6 3 6 9 19 19 Exercício 4.29 – Suponha que A é nxn e Posto(A) = n. i - Veja que Ax = b tem sempre solução e conclua que Col(A) = n ii - Mostre que A é linha equivalente matriz identidade nxn e conclua que Lin(A) = n 4.3.2 - Demonstração da unicidade da forma escada. (opcional) No ALAP 3, elegemos a unicidade da forma escada de uma matriz A como o teorema-chave daquele capítulo. No entanto, não o demonstramos naquele momento, por acharmos que podemos fazê-lo de uma maneira bem mais interessante usando a informação que o espaço das linhas de duas matrizes linha- equivalentes são os mesmos. Tal fato nos permite dar uma demonstração com um “sabor mais geométrico” da unicidade da forma escada de uma matriz mxn, conforme havíamos anunciado no ALAp 3. Ou seja, supondo que U = m 2 1 U U U e U’= m 2 1 U U U são matrizes na forma escada, linha-equivalentes entre si, queremos mostrar que os pivôs de U e de U’ estão nas mesmas colunas. É óbvio que a afirmação acima vale no caso em que n=1, ou seja, no qual U e U’ têm uma única coluna. A demonstração da unicidade da forma-escada de uma matriz se fará por indução finita no número de colunas n. Ou seja, vamos mostrar que se o resultado for verdadeiro para matrizes com k-1 colunas então ele também é válido para matrizes com k colunas. Isto para todo k. Ou seja, como êle é valido para n=1, também vale para n=2. Mas então o argumento de indução finita garante o resultado para matrizes com n=3 colunas. Ao valer para n=3, a demonstração por indução finita garante o resultado para n=4, e assim por diante... Na verdade, vamos formular nossa hipótese de indução finita na forma: Hipótese de indução finita: Suponhamos que U e U’ são matrizes na forma escada com k-1 colunas e tais que V = Lin (U) = Lin( U’) k-1 Então U e U’ têm a mesma forma escada. Sejam U e U’ matrizes na forma escada, com k colunas, e tais que V = Lin (U) = Lin( U’). Queremos mostrar que U e U’ têm a mesma forma escada, supondo ainda a hipótese de indução finita. Basta-nos considerar duas possibilidades quanto a V: i - V 0xk-1 = {x k | x1 = 0} Neste caso, U e U’ têm a primeira coluna identicamente nula. Portanto, se retirarmos de U e de U’ sua primeira coluna, obtemos duas matrizes ~ U e ~ U que continuam na forma-escada, gerando o mesmo espaço das linhas Lin( ~ U ) = Lin( ~ U ), e com k-1 colunas. Podemos então aplicar a hipótese de indução finita a ~ U e ~ U para concluir que têm a mesma forma escada. Colocando de volta a coluna de zeros, chegamos a U e U’ com a mesma forma escada. 20 20 ii - V 0xn-1 Neste caso, U11 0 e U’11 0. Portanto os primeiros pivôs de U e de U’ estão ambos na primeira coluna. Considere matrizes Uˆ e Uˆ , obtidas de U e de U’, retirando-lhes a primeira linha. Ou seja, obtemos matrizes na forma escada Uˆ = m 2 U U e Uˆ = m 2 U U Observe que: Uˆ e Uˆ têm a primeira coluna toda nula, (correspondem a entradas abaixo do 1 0 pivô em U e U’). V Lin( Uˆ ) = Lin( Uˆ ). Veja que se x Lin( Uˆ ), podemos dizer que: x = 2U2 + + mUm = (0, *, *, ,*) x Lin(U) Lin( U’ ) x = ’1U’1 + ’2U’2 + + ’mU’m = (’1, * , * , , *) Ou seja, como a primeira coordenada de x em Lin(U) tem que ser nula, ’1 = 0. Neste caso x =’2U’2 + + ’mU’m está em Lin(U’) Com isto mostramos que Lin(U) Lin(U’). Pela mesma razão se tem também Lin(U’) Lin(U) Mas isto nos coloca exatamente na mesma situação à qual chegamos com as matrizes do item i acima. Pelo mesmo argumento de antes podemos concluir que Uˆ e Uˆ têm a mesma forma escada. Como U e U’ têm o primeiro pivô coincidindo na mesma coluna (a primeira), isto nos garante que U e U’ têm a mesma forma escada. Com isto, a hipótese de indução finita se confirma para n = k também. Para n = 1, ela é trivial. Isto demonstra que, se U e U’ são matrizes na forma escada, tais que Lin(U) = Lin(U’) então U e U’ têm a mesma forma escada. Se duas matrizes U e U’, na forma escada, são linha-equivalentes a A, na subseção anterior vimos que Lin(A) = Lin(U) = Lin(U’). Portanto, U e U’ têm a mesma forma- escada. 4.4 DEPENDÊNCIA E INDEPENDÊNCIA LINEAR Exemplo 4.13 Seja A = 1100 0110 1211 . 21 21 Como A tem posto 3, a equação Ax = 0 tem uma variável livre. Isto significa que Ax = 0 tem uma solução não trivial x = ( c1, c2 , c3, c4 ) T . Ou seja: c1A (1) + c2A (2) + c3A (3) + c4A (4) = 0, com algum ci 0. (4.1) Uma solução particular de Ax = 0 pode ser obtida fazendo c4 = 1, c3 = -1, c2 = 1 e c1 = 0. Em especial, A (2) - A (3) + A (4) = 0 A(3) = A(2) + A(4) (4.1’) 4.1 e 4.1’ explicitam uma idéia de dependência linear entre as colunas de A. Observe que, neste caso, é possível explicitar a coluna A (3) como combinação linear das demais colunas de A, mas não é possível fazer o mesmo com a coluna A (1) . Geometricamente falando, as colunas A (2) , A (3) e A (4) estão num mesmo plano de 3 que contem a origem , mas a coluna A(1) está fora deste plano. (vide exercício 4.31). Definição 4.4: Seja = {v1 , v2 , ... , vn} m Dizemos que é um subconjunto Linearmente Dependente (LD), se existirem constantes c1 , c2 , ... , cn não todas nulas e tais que c1v1 + c2v2 + .... + cnvn = 0 (4.2) Observe que , se c2 0, a relação 4.2 corresponde a dizer que v2 = )vcvcvc( c 1 nn3311 2 Observe que uma maneira equivalente de definir que é um conjunto LD, seria: Definição 4.5: Dizemos que é um conjunto LI se não for LD. Ou seja, {v1 , v2 , ... , vn } é linearmente independente se e somente se a equação c1.v1 + c2.v2 + ... +cn.vn = 0 tiver como única solução c1 = c2 = ... = cn = 0 Observação 4.8 As colunas de A = Amxn são LI se e somente se o posto de A for n. Observe que se as colunas de A são LI então c1A (1) + c2A (2) + + cnA (n) = 0 só acontece com todos os coeficientes ci = 0. Ou seja, Ax = 0 só tem a solução trivial. Mas então A não pode ter variáveis livres e o posto de A é seu número de colunas n. Vice versa, se o posto de A for n, então Ax = 0 só tem a solução trivial x = 0. Mas isto significa que as colunas de A são LI. {0} é LD se um de seus vetores for combinação linear dos demais. 22 22 Exemplo 4.14 - Exemplos de conjuntos LI e LD 4.14.i No 3 , {v1 , v2 } é LD sss v1 e v 2 estão numa mesma reta que contem a origem Neste caso, ou bem v1 = v2, ou então v2 = 0 = 0v1. 4.14.ii No 3 , {A(1) , A(2), A(3) } é LD sss A (1) , A (2) , A (3) estiverem num mesmo plano que contem a origem. A (3) A (1) A (2) Se {A (1) , A (2) , A (3) } {0} é LD, então 1 Posto(A) ¨2. Há duas possibilidades: Posto(A) = 1 - Neste caso todos eles estão numa única reta contendo a origem. Posto(A) = 2 - Neste caso a origem e dois deles definem um plano, e o terceiro vetor estará forçosamente neste plano. 4.14.iii - Como Ix = 0 x = 0, as colunas da matriz I = Inxn são vetores LI em n 4.14.iv - As linhas de U = 23000 11010 12121 são LI e as colunas de U são LD Para ver que as linhas de U são LI, tomemos 1, 2 e 3 tais que: 0 = 1U1 + 2U2 + 3U3 = (1, 21 + 2, 2, 21 + 2 + 33, 1 -2 + 23) . Veja que a primeira coordenada de 1U1 + 2U2 + 3U3 vale exatamente 1. Isto implica 1=0 e 2U2 + 3U3 = 0. Mas neste caso, a segunda coordenada de 2U2 + 3U3 vale 2. Isto implica 2 = 0, e portanto 23 23 igualmente 3 = 0. Ou seja, garantimos 1 = 2 = 3 = 0 e, portanto, pela definição 4.5, que as linhas de U são LI. Como a terceira coluna de U é igual a primeira, as colunas de U são LD 4.14.v - Se U está na forma escada e tem posto p então U1 ,U2 , . . .,Up são vetores LI A demonstração que as linhas não-nulas de uma matriz escada são LI se faz com o mesmo argumento usado no item anterior, no caso particular onde U tinha três linhas não nulas. (Verifique isto). 4.14.vi - Se A é matriz mxn, o conjunto das soluções canônicas de Ax = 0 é LI Basta observar que se S é a matriz das soluções canônicas de A., então coincide com as coordenadas das variáveis livres de S (vide exemplo 3.15 e exercício 3.23+.ix). Portanto, S = 0 = (S)L = 0 Pela definição 4.5, isto nos garante que as colunas de S são LI. 4.14.vii- Considere a matriz do exemplo 3.9, A = 0 0 1 34563 26542 32321 . Ao aplicar a eliminação de Gauss a A, obtivemos uma matriz U na forma escada linha equivalente a A: U = 5 2 1 1010000 42100 32321 Observe que as colunas dos pivôs correspondem a j1 = 1, j2 = 3, j3 = 4. Vamos verificar que as colunas pivotais de A são LI. Seja AD = 453 652 231 AAA 321 jjj a matriz das colunas pivotais. Queremos mostrar que as colunas de AD são LI. Observe que AD é linha equivalente a UD = 1000 210 231 , já que as operações feitas para levar A até U, foram definidas de forma a levar AD até uma forma triangular UD. Mas então o posto de AD é o mesmo que o posto de UD, ou seja 3. Pela observação 4.8 isto nos garante que as colunas de AD são LI. 4.14.viii – As colunas pivotais de toda matriz A são LI O argumento é exatamente o mesmo usado no exemplo acima. Ou seja, se AD é a matriz formada pelas colunas pivotais de A, e U é uma matriz linha equivalente a A, então AD é linha equivalente à matriz UD, das 24 24 colunas pivotais de U, que é pxp, triangular, superior e sem zeros na diagonal. Portanto, AD é mxp, e seu posto é o mesmo que o posto de U, ou seja, p. Pela observação 4.8, as colunas de AD são LI. Exercícios da seção 4.4 Exercício 4.30 - Em cada caso, diga quais dos conjuntos abaixo é LD . Se o for, escreva um de seus vetores como combinação linear dos demais: i -{ (1,2,1,3) T , (2,-1,1,2) T , (1,4,1,3) T } 4 ii - { (1,2,1,3) T , (2,-1,1,2) T , (1,4,1,3) T , (1,0,0,0) T } 4 iii - { (1,2,1,3) T , (2,-1,1,2) T , (1,4,1,3) T , (1,0,0,0) T , (0,0,0,1) T } 4 Exercício 4.31 - Verifique que, no exemplo 4.13: i - As colunas A (2) , A (3) e A (4) estão num mesmo plano que contem (0 0 0) T ii – A(1) está fora do plano definido no item anterior Exercício 4.32 - Verifique que se S (1) é a primeira solução canônica de Ax = 0, então AS (1) = 0 corresponde a escrever a primeira coluna de variáveis livres de A uma combinação linear das colunas pivotais. Veja que algo semelhante vale para cada uma das demais colunas de variáveis livres. Exercício 4. 33+ - Mostre que se v1 , v2 , ...., vn são vetores LD então um deles é combinação linear dos demais. Exercício 4.34 - Certo ou errado? Justifique: i - Dois vetores em são sempre LD. ii - Tres vetores em 2 são sempre LD. iii - Dois vetores em 2 são sempre LI. iv - Quatro vetores em 3 são sempre LD vii - Se = {v1, v2} é LI no 3 , é possível encontrar v3 no 3 tal que {v1,v2,v3} continue LI. viii - Se {v1,v2,v3} é LD então v1 é uma combinação linear de v2 e v3. ix - Se V = [ v1, v2, v3] e v1 é uma combinação linear de v2 e v3 então V = [v2, v3] 4.5 BASE DE SEV Bases de SEVs do n são importantes por funcionarem como sistemas de coordenadas para os SEVs, conforme teremos ocasião de apontar já ao final da subseção 4.5.1. Em 4.5.1 conceituaremos, inicialmente, o que se entende por base de um SEV do n e veremos exemplos relevantes. Em 4.5.2 veremos que todo SEV do n admite uma base. Em especial, que todo SEV do n é da forma Col(A), para alguma matriz A. Em 4.5.3 trabalhamos a idéia de dimensão de um SEV, e apresentamos um algoritmo bastante prático para achar bases de Col(A) e de Lin(A). 25 25 4.5.1 Definição e exemplos Pelo que vimos na subseção 4.3.1, se V = Ger(A1, A2,,Am) = Lin(A) for o espaço das linhas de uma matriz A, de posto p, e U for uma matriz escada linha-equivalente a A então: i - V = Ger(U1 , U2 , ... , Up) = Lin(U) ii - { U1 , U2 , ... , Up } é LI (vide exemplo 4.14.v) Definição 4.6: Uma base de um SEV V do n é um subconjunto finito = {U1 , U2 , ... , Up } V, satisfazendo i e ii acima. Em palavras, é um subconjunto LI de geradores de V Exemplos 4.15: i - = { (1,0)T , (0,1)T} é uma base do 2 ii - = {(1,2)T , (1,-1)T} é uma base do 2 iii - = { (1,0)T , (0,1)T, (1,1)T} não é LI, e portanto não é uma base do 2 iv - Seja V = [ (1,0,2) , (2,1,0) , ( 1,1,-2)], como no exemplo 4.12. = { (1,0,2), (2,1,0) , ( 1,1,-2) } não é LI e portanto não é uma base de V. No entanto, U = 1 0 2 2 1 0 1 1 2 é linha-equivalente a U = 1 0 2 0 1 4 0 0 0 Portanto, V = [(1,0,2), (0,1,-4)] . Além disto, (1,0,2) e (0,1,-4) são LI. Ou seja, = {(1,0,2), (0,1,-4)} é uma base de V. v - As colunas da matriz identidade nxn formam uma base do n. vi - As soluções canônicas de Ax = 0 formam uma base de N(A) = {x n | Ax=0} Na observação 4.4 registramos que, as soluções canônicas de Ax = 0 geram N(A). No exemplo 4.14.vi, vimos que também são LI. vii - As linhas não nulas de uma matriz na forma escada e linha-equivalente a A, formam uma base para o espaço das linhas de A, conforme situamos logo no início desta subseção. viii – Cheque que dada uma base = { U1 , U2 , ... , Up } para o espaço das linhas de A T , então = { U1 T , U2 T , ... , Up T } é uma base para o espaço das colunas de A. 26 26 Exemplo 4.16- Sejam A = 10 11 , B = 110 111 , = )2()1( A,A e = {B (1) , B (2) , B (3) } Verifique que é uma base de 2 , enquanto que é um conjunto LD de geradores de 2. Seja d = (d1 d2) T um ponto qualquer de 2. Vamos escrevê-lo como combinação linear dos vetores de , e depois como combinação linear dos vetores de . Se d = x1A (1) + x2A (2) , isto significa que Ax = d. Como A é 2x2 de posto 2, obtemos para Ax = d uma única solução: x = 2 21 d dd . (4.3) Isto significa que só há uma maneira de escrever cada vetor d de 2 como combinação linear das colunas de A, a saber: d = (d1-d2) A (1) + d2 A (1) Se d = x1B (1) + x2B (2) + x3B (3) , isto significa Bx = d. Como B é 2x3 de posto 2, devemos esperar mais de uma solução para Bx = d. De fato, Bx = d 3 22 211 x dx 2ddx Por exemplo, para = 0 e = 1, obtemos duas maneiras distintas de escrever d como combinação linear das colunas de B d = (d1-d2) B (1) + d2 B (2) = (d1 - d2 -1 ) B (1) + (d2 – 1) B (2) + B (3) Observação 4.9 Base como sistema de coordenadas num SEV O exemplo acima é bastante ilustrativo da diferença fundamental que existe entre uma base de um SEV e um conjunto de geradores que não é base. Ela reside no fato que todo vetor do SEV se escreve de uma única maneira como combinação linear dos vetores de uma base dada, o que não ocorre se o conjunto de geradores não for uma base. Em particular, uma base de um SEV funciona como um sistema de coordenadas do SEV. No caso acima, por exemplo, a unicidade de x expressa na relação 4.3, faz com que possamos pensar em x = (d1- d2 d2) T como um vetor que representa as coordenadas de d na base do 2 constituída pelas colunas de A. Na seção 4.5 veremos como isto funciona, no caso geral. Exercícios da subseção 4.5.1 Exercício 4.35 - Mostre que se V = Ger(v1 , v2 , .... , vn ) e v2 for combinação linear dos demais, então V = Ger(v1 , v3 , .... , vn ) 27 27 Exercício 4.36 - Sejam v1 = (1,3,5,2) T , v2 = (1,0,1,0) T e v3 = (2,3,6,2) T . Ache uma base de V = [ v1 , v2 , v3 ] que esteja contida em {v1 , v2 , v3} Exercício 4.37 - Cheque as afirmações feitas nos exemplos 4.15.i-ii, 4.15.v e 4.15.viii Exercício 4.38 - Considere A = 1 0 1 1 2 1 0 1 5 2 1 3 i - Encontre uma base para o espaço das linhas de A. ii - Encontre uma base para o espaço das colunas de A. iii - Encontre uma base para o espaço das linhas de AA T iv - Encontre uma base para o espaço das linhas de A T A Exercício 4.39 - Seja um subconjunto do 2. Verifique que i - Se tiver apenas um vetor então não gera 2 ii - Se tiver tres vetores então êles são LD. iii - Conclua que toda base do 2 tem exatamente dois vetores. Exercício 4.40 - Seja um subconjunto do 3. Verifique que i - Se tiver menos de tres vetores então não gera o 3 ii - Se tiver quatro vetores então êles são LD no 3. iii - Conclua que toda base do 3 tem exatamente tres vetores. 4.5.2 Todo SEV do n tem uma base Nesta subseção veremos que, teoricamente, sempre é possível obter bases de SEVs do n. Nossa preocupação aquí é um pouco mais teórica, porém essencial ao que se segue. Começamos vendo como, dado conjunto de geradores de um SEV, não necessariamente LI, sempre é possível extrair-lhe uma base para W. Observação 4.10 Todo conjunto finito de geradores de um SEV W contem uma base de W. Dem : A observação é uma consequência imediata do fato que se W = Ger(v1 , v2 , .... , vn ) e um dos vi for combinação linear dos demais, então podemos eliminá-lo da lista, no sentido que os demais vetores continuam gerando V. (Vide exercício 4.35) Na observação anterior vimos como se pode construir uma base de um SEV do n a partir de uma lista finita de geradores, jogando fora da lista, sucessivamente, aqueles vetores que dependem linearmente dos demais. Nossa preocupação agora é em construir uma base de um SEV W, acrescentando, sucessivamente, vetores a uma lista LI de vetores em W. A idéia pode ser entendida mais facilmente no seguinte exemplo. 28 28 Exemplo 4.17 Construindo uma base para o 3 Uma maneira de começar seria escolhendo um vetor não nulo qualquer, digamos v1 = (1 1 2) T e fazendo = {v1}. Obviamente a reta que contem v1, W1 = Ger(v1) não é todo o 3. Escolhamos então um v2 que não esteja em W1 , diga- mos v2 = (1 2 0) T (vide exercícios 4.41-42) e atualizemos para = {v1,v2}. Observe que continua LI e W2 = Ger(v1,v2) é um plano no 3 . Tomemos agora um v3 qualquer que não esteja em W2 , digamos v3 = (0 0 1) T e atualize- mos para = {v1,v2, v3}. Observe que continua LI, mas agora 3 = Ger(v1,v2, v3). Observação 4.11 Acrescentando vetores a uma lista LI Se = { v1, v2, , vk} é um conjunto de vetores LI no n e vk+1 não estiver no subespaço gerado pelos vetores de , então, ao acrescentarmos vk+1 , = { v1, v2, , vk, vk+1} permanece LI. Para vê-lo, tome uma combinação linear nula dos vetores de : 0 = c1v1 + c2v2 + + ck+1vk+1 ck+1vk+1 = –( c1v1 + c2v2 + + ckvk) ck+1 tem que ser zero, pois senão vk+1 = – ( c1v1 + c2v2 + + ckvk)/ ck+1 estaria no SEV gerado por Como ck+1 = 0, então 0 = c1v1 + c2v2 + + ckvk c1 = c2 = = ck , uma vez que é LI Ou seja, se uma combinação linear dos vetores de é nula, seus coeficientes são todos nulos. Isto significa que é LI. Uma pergunta natural, agora, seria: Todo SEV do m admite uma base ? A resposta afirmativa constitui nosso primeiro teorema-chave deste capítulo. A idéia de como garantir uma base a um SEV V já está colocada no exemplo 4.17 e na observação 4.11. Ou seja, é começar com um vetor não nulo de V e ir acrescentando vetores de V, de forma a deixar sempre linearmente independente. O processo sempre se esgota em, no máximo, m passos, conforme veremos a seguir. Teorema-chave 4.1 Se W é um SEV do m e W é um subconjunto LI, então é possível “completar” , de modo a obter uma base de W, no sentido que . Em especial, todo SEV W {0} do m admite uma base. Dem: Sejam W {0} um SEV de m; = { A(1), ..., A(j) } W, LI ; V = Col(A(1), ... , A(j)). Se W = V, é uma base de W. Senão, considere A(j+1) em W – V , atualize , acrescentando-lhe A(j+1) , ou seja, fazendo = { A(1), ... , A(j+1) }. Atualize V para V =Col(A(1), ... , A(j+1)). Pela observação 4.11, continua LI. W1 v1 v3 v2 W2 29 29 Do mesmo jeito, se W = V, é uma base de W. Senão considere A(j+2) em W – V, atualize para = { A(1), ... , A (j+2) } e V = Col(A (1) , ... , A (j+2) ). Pela observação 4.11, continua LI. Os três pontinhos significam que, podemos ir repetindo os passos acima k vezes, enquanto W Col(A (1) , ... , A (j + i -1) ), para i=1,, k. Isto significa que depois de k iterações, teremos = {A(1), A(2), , A(j+k)} e V = Col(A (1) , A (2) , , A(j+k)) W. Do mesmo jeito que antes, a observação 4.11 nos garante que continua resultando LI. Portanto, se W = V, é uma base de W. Só falta mostrar que este processo não pode continuar indefinidamente. Mais precisamente, termina com k n-j, pela razão que se = {A(1), A(2), , A (m+1) }, a matriz A = (A (1) A (2) A(m+1) ) teria m linhas e m +1 colunas. Neste caso, o posto de A seria no máximo m e, portanto, menor que o número de colunas. A observação 4.8 nos garantiria, neste caso que as colunas de A são LD, contradizendo a construção de , que as garante LI. Isto significa que W tem uma base com, no máximo, m elementos. Em especial, se W 0, seja A (1) ≠ 0 um vetor em W, considere = {A(1) }. é LI e o argumento acima nos garante uma base para W, contendo A(1) . Exercícios da subseção 4.5.2 Exercício 4.41 - Sejam W = Col(A), onde A = 110 011 121 , e b = 1 0 0 i – Obtenha a fatoração A = LU, com L triangular inferior e U triangular superior, sem relaizar trocas de linhas ii – Verifique que W é um plano no 3 e que = {A(1) , A(2)} define uma base de W iii - Observe que Lb = b, e que Ux = b não tem solução. iv - Conclua que Ax = b também não tem solução, sem fazer mais contas. v - Conclua que b não está em W = Col(A), sem fazer mais contas. vi – Você sabe explicar por quê não foi uma coincidência obtermos b em 3 – W e se isto corresponde a alguma estratégia possível para se encontrar um ponto fora de W.. (Sugestão: Observe que se Lb = b e Ux = b não tem solução, tampouco Ax = L(Ux)=Lb terá.) Exercício 4.42 - Sejam W = Col(A), onde A = 110 242 121 e b = 1 0 0 , c = 0 1 0 i - Verifique que Ax = b tem solução, mas Ax = c não tem. Ii – Verifique que não é possível aplicar a eliminação de Gauss a A, sem trocar a segunda linha com a terceira. iii * – Explique por quê não foi uma coincidência obter c em 3 – Col(A) (Sugestão: Pense na fatoração PA = LU, bem como no fato que Ux = b não tem solução) 30 30 4.5.3 Dimensão de um SEV Os exercícios 4.35 e 4.36 nos indicam uma questão-chave para tudo o que se segue: Duas bases de um mesmo subespaço vetorial têm o mesmo número de elementos? Teorema chave 4.2 Seja V = [A (1) , A (2) , ... , A (n) ] = Col(A) Então qualquer subconjunto de V com mais de n elementos é LD DEM: Seja = { B(1) , B(2) , ... , B(p)} V. Queremos mostrar que se p > n então é LD. Como V = Col(A), para cada j = 1, 2, ... p, obtenha C (j) tal que B (j) = AC (j) Em particular, obtemos uma matriz C, nxp e tal que B = AC. Como n < p, C tem variáveis livres. Seja x uma solução não trivial de Cx = 0. Mas então Bx = ACx = 0, com x 0. Isto significa que as colunas de B são LD, como queríamos. Em particular, o teorema chave nos diz que, se e são duas bases de um mesmo SEV W, então nem pode ter mais vetores que , nem pode ter mais vetores que . Ou seja: Definição-chave 4.7: Seja V um SEV do m. A dimensão de V é o número de elementos de qualquer uma de suas bases. Se = { v1 , v2 , ... , vn } é uma base qualquer de V, denotamos dim(V) = n. Exemplos 4.18: 4.18.i - Como as colunas da matriz identidade formam uma base do n dim( n) = n 4.18.ii - Dim( {(x1,x2,x3) : 2x1 + 3x2 - x3 = 0} ) = 2. (Por quê?) 4.18.iii - Se V = [(1,0,2) T , (2,1,0) T , ( 1,1,-2) T ], como no exemplo 4.5 dim(V) = 2 4.18.iv - Do exemplo 4. 15.vi, segue que a dimensão do espaço nulo de A vale n -Posto(A). 4.18.v - Do exemplo 4.15.vii, segue que a dimensão do espaço das linhas de A é Posto(A) Consequência fundamental do teorema-chave 4.2: Duas bases quaisquer de um mesmo SEV do m têm o mesmo número de elementos. 31 31 4.18.vi - Do exemplo 4.15.viii, segue que a dimensão do espaço das colunas de A é Posto(A T ) Observação 4.12 Duas consequências do teorema-chave 4.2 k vetores LI num SEV do n de dimensão k formam uma base. Seja W um SEV do n de dimensão k, e = {A(1),..., A(k) } W e LI. Se não fosse base de W, o teorema-chave 4.1 nos forneceria uma base de W com mais do que k elementos, contrariando o teorema- chave 4.2. k geradores num SEV do n de dimensão k formam uma base. Suponha que W = Ger(A (1) ,... , A (k) ) que suas colunas A (1) ,... , A (k) são também LI, e portanto uma base de W. Na seção 3.5, nos deparamos com uma situação na qual era importante saber se o posto de A é o mesmo que o posto de sua transposta. No exemplo 4.14.viii, vimos que as colunas pivotais de A formam um subconjunto LI do espaço das colunas de A. Mas então o teorema chave 4.1 nos diz que é possível obter uma base de Col(A) que inclua as colunas pivotais. Em particular, como o número de colunas pivotais é o posto de A, isto significa que: dim(Col(A)) Posto(A) (4.4) Por outro lado, no exemplo 4.18.vi, vimos que dim(Col(A)) = dim(Lin(A T )) = Posto(A T ). Juntando isto com a desigualdade 4.4, obtemos Posto(A T ) Posto(A) (4.5) Mas como A = (A T ) T , podemos usar 4.5, para obter: Posto(A) = Posto( (A T ) T ) Posto(AT) (4.6) As duas últimas inequações garantem nosso último resultado chave deste capítulo: Teorema-chave 4.3 - Se A é uma matriz mxn então Posto(A) = Posto(AT). Em particular, Posto(A)= dim(Col(A)) = dim(Col(A T )) = dim(Lin(A)) 32 32 Exemplo 4.19 Obtendo uma base do espaço das colunas Considere A = 33321 87642 54321 e veja que U = 00000 21000 54321 é uma matriz na forma escada linha-equivalente a A. Portanto, Dim(Col(A)) = Posto(A) =2 As colunas pivotais de A são a primeira e a quarta. Portanto = { A(1), A(4) } é um subconjunto LI num SEV de dimensão 2. A observação 4.8 nos garante então que é uma base do espaço das colunas de A. Na verdade, o argumento acima se generaliza facilmente e não foi por acaso que obtivemos as colunas pivotais formando uma base do espaço das colunas de A, conforme poderemos ver a seguir. Observação 4.13 As colunas pivotais formam uma base do espaço das colunas de A Observe que o número de colunas pivotais de A coincide com seu posto que, segundo o teorema-chave 4.3, é também a dimensão do espaço das colunas de A. Como o conjunto formado pelas colunas pivotais de A é LI e tem o mesmo número de elementos que a dimensão de A, a observação 4.8 nos garante que as colunas pivotais de A formam uma base do espaço das colunas de A. Esta é, provavelmente, a razão pela qual as colunas pivotais são frequentemente denotadas como colunas básicas de A, na literatura. No sentido de indicar que definem uma base de Col(A), a denominação “básicas” lhes é muito adequada. Juntando o fato que o espaço das linhas de matrizes linha-equivalentes são os mesmos (subseção 4.3.1), com o fato de as linhas de uma matriz na forma escada formarem uma base de seu espaço das linhas (exemplo 4.15.vii) e o fato das colunas pivotais de A serem base do espaço das colunas de A (observação logo acima ), obtemos: Algoritmo para achar bases dos espaços das linhas e das colunas de A: Passo 1 - Ache uma matriz escada U, linha equivalente à A Passo 2 - Forme uma base do espaço das linhas de A com as linhas não nulas de U. Passo 3 - Forme uma base de Col(A) com as colunas de A correspondentes às dos pivôs de U Alternativamente, aplique os passos 1 e 2 à matriz A T. Ou seja, considere uma matriz U’, linha equivalente a A T . As linhas não-nulas de U’ (transpostas) formam uma base do espaço das colunas Col(A) 33 33 Exercícios da subseção 4.5.3 Exercício 4.43 - Cheque a dimensões indicadas no exemplo 4.18.ii Exercício 4.44 – Ache uma base do 3 que contenha v1 = (1, 2,1) T e (2,3,4) T . Exercício 4.45 - Considere A = 2210 1201 1011 . Calcule as dimensões e explicite bases para Col(A), Col(A T ) , N(A), N(A T ). Exercício 4.46 - Ache uma base para W = [(1,0,1,0) T ,(1,-1,1,2) T ,(3,-2,3,4) T ] 4 e calcule a sua dimensão. Exercício 4.47 – Sejam V e W SEVs do n. Certo ou Errado? Justifique: i - Sejam v1 = (1,0,1,0) T , v2 = (2,1,2,1) T e v3 = (-2,-2,-2,-2) T . Existe uma base do 4 que contem v1, v2 e v3. ii - Sejam v1 = (1,0,1,0) T , v2 = (2,1,2,1) e v3 = (-2,-2,-2,0) T . Existe uma base do 4 que contem v1, v2 e v3. iii - Sejam v1 = (1,0,1,0) T , v2 = (2,1,2,1) , v3 = (-2,-2,-2,-2) T , v4 = (0, 0, 0, 1) e v5 = (-1,-1,-1,0). Existe uma base do 4 formada com quatro dos cinco vetores acima. iv Sejam v1 = (1,0,1,0) T , v2 = (2,1,2,1) , v3 = (-2,-2,-2,-2) T , v4 = (0, 0, 0, 1) e v5 = (-1,-1,-2,0). Existe uma base do 4 formada com quatro dos cinco vetores acima. v – Se é um conjunto de geradores de V com 5 elementos, então dim(V) = 5 vi - Se é um conjunto de geradores de V com 5 elementos, então dim(V) 5 vii - Todo conjunto de geradores de V com p = dim(V) elementos é uma base de V. viii - Se é um conjunto LI de vetores de V com 5 elementos, então dim(V) = 5 ix - Se é um conjunto LI de vetores de V com 5 elementos, então dim(V) 5 x - Se dim(V) = 5 e = {v1, v2, v3 } é um conjunto LI formado por vetores de V, então é possível completar , de modo a formar uma base ’ para V ( ou seja, de modo que ’}. xi – Todo conjunto LI de vetores de V com p = dim(V) elementos é uma base de V. xii – Se W V é SEV do n então dim(W) dim(V) xiii – Se dim(W) dim(V) então W está contido em V 4.6 Bases como sistemas de coordenadas num SEV No exemplo 4.16 vimos a diferença que existe entre uma base de um SEV e um conjunto de geradores LD, num caso particular. Na observação 4.17, indicamos que as bases de SEVs funcionam como sistemas de coordenadas. O objetivo desta seção é explorar esta idéia. Na primeira subseção verificamos que, no caso geral, podemos entender uma base de um SEV do n como um sistema de coordenadas no SEV. Na subseção 34 34 4.6.2 tratamos da relação que existe entre as coordenadas de um vetor em diferentes bases de um mesmo SEV, essencial para podermos trabalhar com as transformações lineares no n. 4.6.1 Bases ordenadas de um SEV Começamos generalizando a situação descrita na observação 4.17 Observação 4.14 Se = {v1, v2, ... ,vn} é uma base de V então todo vetor em V se escreve de maneira única como combinação linear dos elementos de . DEM : Suponha que v V seja tal que v = 1v1 + .... + nvn = 1v1 + .... + nvn . Mas então 0 = (1-1) v1 + .... + (n - n) vn . A independência linear de nos garante, neste caso, todos os coeficientes (i - i) = 0. Ou seja, i = i , para todo i 1,,n Na verdade estamos interessados em bases ordenadas, para poder usá-las como sistemas de coordenadas. Definição 4.8 Dizer que = { v1 , v2 , ... ,vn } é uma base ordenada, significa dizer que seus vetores não podem mudar de posição, ou seja, a cada vetor vi está associado o i-ésimo lugar que ele ocupa em Definição 4.9 Coordenadas de um vetor numa base ordenada Sejam V um SEV do m e = { v1 , v2 , ... ,vn } uma base ordenada de V. Seja v V com v = 1v1 + 2v2 + ... + nvn .. Designamos por coordenadas de v na base ao ( único ) vetor do n definido como: [v] = n 2 1 35 35 Exemplo 4.20 Observe que = {(1,0,1)T, (0,1,-1)T , {1,1,1)T } é uma base do 3. Sejam v = 3 2 1 e [v] = 3 2 1 . Então: . Exercícios da subseção 4.6.1 Exercício 4.48 - Ache uma base para o plano de equação x + y + z = 0. Ache as coordenadas de ( 1 1 -2) T nesta base. Encontre as coordenadas de (a b -(a+b) ) T nesta base. Exercício 4.49 (41)- i -Verifique que = 1 0 1 0 1 1 1 1 1 0 0 1 , , , é um conjunto de geradores do 3, mas não uma base. ii - Escreva x = x x x 1 2 3 como combinação linear dos vetores de de duas maneiras diferentes. Exercício 4.50 - Sejam a base canônica do 3 ( = 1 0 0 , 0 1 0 , 0 0 1 ) e = 1 0 1 0 1 1 1 1 1 i - Verifique que é uma base do 3 ii - Dado x = 3 2 1 x x x 3, encontre uma matriz M tal que x = M[x] iii - Mostre que M é invertível e calcule [(1,0,0) T ] Exercício 4.51 - Certo ou errado? Justifique: i - Se dim(V) = 4 e ={v1, v2 , v3} é um conjunto LI então V Ger(v1, v2 , v3 ) 3 2 1 321 32 31 1 1 1 1 1 0 1 0 1 v 321 4 2 3 v 36 36 ii - Se dim(V) = 4 e ={v1, v2 , v3} é um conjunto LI, então é possível completar uma base de V, a partir de . Ou seja, é possível encontrar v4 tal que ={v1, v2 , v3, v4 } é uma base de V iii - Se dim(V) = 4 e ={v1, v2 , v3,v4 ,v5}, então não é LI. iv - Seja V = VA VB. Se e são bases de VA e VB respect., então é uma base de V v - Se dim(V) = n então nenhum conjunto com menos de n vetores pode gerar V. vi - Se dim(V) = n então nenhum conjunto com mais de n vetores de V pode ser LI. 4.6.2 Mudança de bases no n No capítulo 8 tentaremos esmiuçar melhor o que acontece com o produto matriz-vetor como uma função linear no n. Um ingrediente fundamental para tal entendimento será a mudança de bases. Ou seja, veremos que, para cada matriz A = Anxn , existem bases “naturais”, nas quais é possível entender bem melhor o que acontece com a função que a cada x do n, associa Ax, do que na base canônica. Nesta seção trataremos de ver que a mudança de coordenadas entre duas bases e ´, essencialmente, corresponde a um produto matriz- vetor. Vamos começar com um exemplo particular de mudança de coordenadas no 3. Todas as bases a seguir são consideradas como bases ordenadas, salvo menção em contrário. Exemplo 4.21 Sejam = {I(1), I(2),I(3)}} a base canônica do 3 e M = 211 112 111 Verifique que Posto(M) = 3. Em particular, ={M(1), M(2), M(3)} é uma base do 3. i - Observe que se x 3, x = x1 I (1) + x2 I (2) + x3 I (3) . Isto implica [x] = x ii - Veja que se x 3 e y = 3 2 1 y y y = [x ] , então x = y1M (1) + y2M (2) + y3M (3) = My = M[x] Ou seja, x = [x] = M[x] = My M é invertível, já que Posto(M) = 3. Em particular [x]= y = M -1 x = M -1 [x] Neste sentido podemos pensar na matriz M como a matriz de mudança da base para a base canônica e em M -1 como a matriz de mudança da base canônica para a base . Por exemplo, as coordenadas de x = (1,0,0) T na base , se obtêm resolvendo My = x 211 112 111 y = 0 0 1 y = [x] = 1 1 1 37 37 Observação 4.15 Considere a base canônica = {I(1), I(2), ...., I(n)} do n, bem como uma segunda base = { M(1) , ....., M(n ) } do n . Considere ainda a matriz M = (M(1) M(2) ....M(n)), cujas colunas são os vetores de . Podemos dizer que i - Se x n, então x = x1I (1) + x2I (2) + + xnI (n) x = [x] ii - Seja y = [x] . Então x = y1M (1) + y2M (2) + + ynM (n) = My iii - Mostre que M é invertível e portanto que y = M -1 x ( ou seja, [x] = M -1 [x] ) M é denominada matriz de mudança da base para a base canônica do n . Sua inversa M -1 é a matriz de mudança da base canônica para a base . Exemplo 4.22 Além das bases e do exemplo anterior, considere ainda a base ’ = 2 1 1 , 0 1 1 , 1 0 1 . Seja M’ = 201 110 111 e veja que Posto(M’) = 3. Em particular, ’ também é base do 3. i - Podemos fazer, para a base ’, o mesmo que fizemos para a base do exemplo anterior, e dizer que x = [x] = M’ [x]’=M’y’ . M´ é, analogamente, a matriz de mudança da base para a base canônica. Observe que x = My = M’y’ implica que [x] = y = M -1M’y = (M-1M’)[x]’ . Neste sentido, podemos definir M -1M’ como a matriz de mudança da base ’ para a base . ii – Veja que M’(1) = M’ 0 0 1 = 1 0 1 e que a primeira coluna de M -1M’ é: (M -1M’)(1) = M-1M’(1) = M-1 1 0 1 = 1 0 1 Com o mesmo argumento, podemos concluir que a segunda e a terceira colunas da matriz de mudança da base para a base ’ se escrevem: 38 38 (M -1M’)(2) = M-1M’(2) = M-1 1 1 0 = 1 1 0 e (M -1M’)(3) = M-1M’(3) = M-1 2 1 1 = 2 1 1 Em particular isto significa que M -1M’ = 2 1 1 0 1 1 1 0 1 . Em palavras, podemos dizer que a matriz de mudança da base ’ para a base tem por colunas as coordenadas dos vetores da base ’ na base . Observação 4. 16 - No caso geral, no qual temos duas bases ordenadas e ´ do n, sejam M e M´ as matrizes cujas colunas são respectivamente os vetores de e ’, escritos na sua ordem. Em particular, M e M’ serão invertíveis (por que?) e temos que: i - Se x n, então x = M[x] = M’[x]’ [x] = M -1M’[x]’ Ou seja, também podemos interpretar, neste caso mais geral, a matriz M -1M’ como uma matriz de mudança da base ’ para a base ii – Como no exemplo logo acima, também aqui obteremos que as colunas de M-1M’ são formadas pelas coordenadas dos elementos de ’, descritos na base , ou seja: M -1M’ = ( M-1M’(1) M-1M’(2) M-1M’(n) ) = ( [M’(1)] [M’(2)] [M’ (n) ] ) Exercícios da seção 4.6.2 Exercício 4.52 - Sejam a base canônica do 4 e = {(1,1,0,0)T , (0,1,1,0)T , (0,0,1,1)T, (0,0,0,1)T}. i - Verifique que é uma base do 4 e ache a matriz de mudança da base para a base , ou seja M tal que x = [x] = M[x] ii - Ache as coordenadas de b = (1,-1,1,2) T na base , resolvendo o sistema My = b Exercício 4.53 - Sejam ’ = {(1,1,1,0}, (1,0,1,-1),(0,1,1,0)(1,1,0,3)}e b = (1,-1,1,2)T i - Verifique que ’ é base de 4 e calcule as coordenadas de b na base ’. ii - Ache a matriz C, cujas colunas são as coordenadas dos vetores de ’, calculados com relação à base do exercício anterior e verifique que [b] = C[b]’ . 39 39 4.7 Propriedades do posto das matrizes No teorema-chave 4.3, estabelecemos que o posto de A mede a dimensão do espaço das linhas de A, bem como a dimensão do espaço das colunas de A. Gostaríamos de ressaltar que esta é uma interpretação importante do significado de posto de uma matriz. No capítulo 5, veremos como isto se relaciona com a interpretação esboçada na observação 3.5 para o posto de uma matriz como o número de equações “não redundantes” do sistema Ax = 0. Já estabelecemos, até aquí, várias propriedades do posto de uma matriz. O objetivo desta seção é estabelecer mais algumas e organizar um resumo delas. Começamos registrando um resumo das relações entre o Posto de A e os SEVs do m que lhe estão associados, conforme resulta dos exemplos 4.18.v-vi e do teorema-chave 4.3. dim(Col(A)) = Posto(A) (Dimensão do espaço das colunas de A) dim(Col(AT)) = Posto(A) (Dimensão do espaço das linhas de A) dim(N(A)) = n - Posto(A) (Dimensão do espaço nulo de A) dim(N(AT)) = m - Posto(AT) (Dimensão do espaço nulo de AT) Supondo que A é uma matriz mxn, B é nxp e C é pxn: P.1 - Se N(A) N(C) então Posto(A) Posto(C). Em particular, se N(A) = N(C) então Posto(A) = Posto(C) DEM : Se N(A) N(C), segue que dim(N(A)) dim( N(C)) ( pelo teorema chave 4.1) Ou seja, n - Posto(A) n - Posto(C) Posto(A) Posto(C) P.2 - Se M é uma matriz mxm e invertível então Posto(MA) = Posto(A) DEM: Se M é invertível, temos que Ax = 0 sss MAx = 0, para todo x n . Ou seja, N(A) = N(MA). Portanto, por P.1, Posto(A) = Posto(MA) P.3 - Col(AB) Col(A). Portanto, Posto (AB) Posto (A) DEM: Veja que colunas de AB são da forma AB (i) , ou seja, todas elas se escrevem como combinações lineares das colunas de A. Isto nos garante (vide exercício 4.27) que Col(AB) Col(A). Portanto, Posto (AB) = dim(Col(AB)) dim(Col(A)) = Posto (A) P4 - N(B) N(AB). Portanto, por P1, Posto (AB) Posto (B) Veja que Bx = 0 sempre implica ABx = 0. Isto significa que N(B) N(AB). Portanto, dim(N(B)) = p – Posto(B) dim(N(AB)) = p - Posto(AB) Posto (AB) Posto (B) 40 40 P5 – Posto(ATA) = Posto(A) Posto(A T A) Posto(A) é uma consequência de P3. Para ver que Posto(A T A ) Posto (A), por P1, basta mostrar que N(ATA) N(A). A demonstração que N(A T A) N(A) usa essencialmente a mesma argumentação empregada na observação 3.14. Considere x em N(A T A), ou seja, tal que A T Ax = 0. Neste caso, também teremos 0 = (Ax) T Ax = (A1x A2x Amx) xA xA xA m 2 1 = = (A1x) 2 + (A2x) 2 + ... + (Anx) 2 = (Ax)1 2 + (Ax)2 2 + .... + (Ax)n 2 Mas a relação acima implica (Ax)1 = (Ax)2 = ........ = (Ax)n = 0 e, portanto, que Ax = 0. Ou seja, se x está no núcleo de A T A, então também está no núcleo de A, como queríamos. Em resumo , se A é matriz mxn e B é nxp: R.1 - Posto (AB) min{ Posto (A), Posto(B) } R.2 – Se Mmxm é invertível, então Posto(A)=Posto(MA) R.3 - Posto (A T ) = Posto (A) = Posto(A T A) R.4 - dim (Col (A)) = dim (Col (A T )) = posto(A) R.5 - dim (Col (A)) + dim (N(A)) = n Exercícios da seção 4.7 Exercício 4.54 - Ache bases de Col(A), Col(A T ), N(A), N(A T ) para A = 1 2 2 4 . Esboce um desenho no 2 com Col(A) e N (AT) e outro no 2 explicitando Col(AT) e N(AT) Exercício 4.55 - Ache bases de Col(B), Col(B T ), N(B), N(B T ) para B = 1 1 2 2 0 1 . Esboce um desenho no 2 com Col(B) e N(BT) e outro no 3 explicitando Col(BT) e N(BT) 41 41 Exercícios Suplementares: Exercício 4.56 - Ache bases de cada um dos 4 SEVs “ ilustres”(Col(X),Col(XT),N(X),N(XT)), associados às matrizes A = 213 121 e B = 1 3 2 1 0 1 1 1 2 5 1 0 . Verifique que dim(N(X)) + dim(Col(X)) é sempre o número de colunas de X em cada um dos 4 casos nos quais X é A, A T ,B e B T . Exercício 4.57 - Seja = {I(1) , I(2) , I(3)} a base canônica do 3 e M= 1 1 2 1 1 0 2 0 3 i - Verifique que = {M1) , M2) , M3)} é uma outra base do 3 ii - Seja x = (1, 0 ,1) T . Ache o vetor y, das coordenadas de x na base , ou seja, y = [x] . iii - Verifique que, em geral, se x = (x1, x2, x3) T então [x] = M -1 x Exercício 4.58 - Certo ou Errado? Justifique: i - Se A é 3x4 então dim(N(A)) = 1 ii - Se A é 3x5 então dim(N(A)) 2 iii - Se A é 3x4 então A T A não é invertível. iv - Se A é 5x4 de posto 3, então A T A não é invertível v - Se A é mxn de posto m < n, então A T A não é invertível vi - Se y é um vetor-coluna nx1 e y T y = 0, então y = 0 Exercício 4.59 - Sejam A = 01101 12110 10121 e B = 11011 12101 10011 \\ i - Ache as matrizes SA e SB, cujas colunas são as soluções canônicas de Ax = 0 e Bx =0 ii - Verifique que N(A) = Col(SA) e N(B) = Col(SB) iii - Verifique que N(A) N(B) = {0} Exercício 4.60 - Sejam A = 10 01 10 11 , B = 11 11 11 01 e considere WA = Col(A), WB = Col(B) i - Ache matrizes SA e SB, cujas colunas são as soluções canônicas de A T x = 0 e B T x=0, respectivamente ii - Mostre que Col(A) = N(SA T ) e que Col(B) = N(SB T ) iii - Encontre geradores de Col(A)Col(B), aplicando o exercício 4.21 para obter N(SA T ) N(SB T ) 42 42 Exercício 4.61+ - Observe que se W = N(A), já sabemos reescrevê-lo na forma W = Col(S). Basta que S seja a matriz das soluções canônicas. Este exercício visa verificar que a recíproca é verdadeira, ou seja, se um SEV é descrito por um conjunto de geradores, como reescrevê-lo na forma de núcleo de uma outra matriz. Isto pode ser útil, por exemplo, para achar a interseção de SEVs, como no exercício anterior. Suponha que A é mxn, W = Col(A) = [A (1) , A (2) , , A(n) ] e que Posto(A) = p i - Mostre que se B é matriz pxm, tal que BA = 0, então Col(A) N(B). ii - Denote por Y a matriz cujas colunas são as soluções canônicas de A T y = 0 e use o item anterior para mostrar que Col(A) N(YT) iii - Verifique que Y é mx(m-p) de posto m-p e conclua que dim(N(Y T )) = p. iv - Conclua de ii e iii que W = Col(A) = N (Y T ). Exercício 4.62 - Sejam A = 01 10 21 31 , B = 10 21 21 41 , U = Col(A) e V = Col(B) i - Ache uma base da interseção de U e V ii - Ache uma base de U + V iii – Verifique que dim(U+V) = dim(U) + dim(V) – dim(UV) Exercício 4.63 - Sejam W = [ (1,0,0) T , (0,1,1) T ] e W’ = [ (1,-2,1) T , (1,1,0)T] i - Ache matrizes S e S’, 1x3, e tais que W = N(S) e W’= N(S’). ii - Verifique que W W’ é uma reta e ache um gerador de W W’ Exercício 4.64 - Considere as matrizes A = 011 100 112 101 012 e B = 00 21 20 00 11 i - Use o exercício 4.55 para encontrar matrizes YA e YB, tais que Col(A) = N(YA) e Col(B) = N(YB) ii - Verifique que Col(A) + Col(B) = Col( A B ) 43 43 iii - Ache uma base para Col(A) Col(B) (Sugestão: Use o exercício 4.23 para calcular N(SU T )N(Sv T )) iv - Ache uma base U de U que contenha UV v - Ache uma base V de V que contenha UV vi - Verifique que U V é uma base de U + V vii - Verifique que vale a relação: dim( U + V ) = dimU + dimV - dim( U V ) Observação 4.17: O exercício a seguir se destina a verificar que a relação obtida no exercício 4.64.vii vale em geral. (Trata-se de uma relação importante e é um bom exemplo de como um argumento pode ficar mais claro num caso geral, “limpo” de detalhes numéricos secundários.) Exercício 4.65* Mostre que a relação dim( U + V ) = dimU + dimV - dim( U V ) vale sempre desde que U e V sejam SEVs do n (Sugestão: É só seguir o que constitue a essência do procedimento usado no exemplo particular do exercício anterior. Ou seja, considere uma base UV de UV. Em seguida extenda UV a uma base U de U, bem como a uma base V de V. Mostre que U V é uma base de U+V. Contando direitinho o número de elementos em U V , U , V e UV sai a relação desejada.) Exercício 4.66*: Seja A uma matriz mxn. i - Mostre que N(A) Col(AT) = {0} . (Sugestão: Suponha que x = AT y esteja em N(A), ou seja, que AAT y = 0. Veja que isto implica (A T y) T A T y = y T AA T y = 0 e mostre que isto implica A T y = 0). ii - Verifique que dim (N(A) + Im (A T )) = n e conclua que n = N(A) Im (AT) Exercício 4.67 - Certo ou errado? Justifique: i - Se U e V são dois SEVs do 3 de dimensão 2 então U V não é {0} ii - Se U e V são dois SEVs do 3 de dimensão 2 então U V é uma reta. iii - Se U e V são dois SEVs de dimensão 4 do 5 então sua interseção tem dimensão maior que 2 iv - Se A e B são matrizes 2x4 então N(A) N(B) {0} v - Se A e B são matrizes 2x5 então N(A) N(B) {0} vi - Se A e B são matrizes 5x3 então Col(A) Col(B) {0} Exercício 4.68*- Considere a base canônica = {I(1), I(2), ...... , I(n) n , bem como outras duas bases, a saber, = { M(1) , ....., M(n) } e ’ = { M’(1) , ....., M’(n ) } do n . Considere ainda as matrizes M = (M(1) M(2) ....M (n)) e M’ = (M’(1) M’(2) ....M’(n)) , de mudança das bases e ’ para a base canônica . Sejam ainda x = [x] um vetor qualquer do n , y = [x], y’ = [x]’ M -1M’ é a matriz de mudança da base ’ para a base . Denota-se 44 44 I = M -1M’ i - Observe que [x] = I [x]’ ii - Verifique que M = I e que M’ = I iii - Seja ’’ uma outra base do n. Mostre que Alap4 Exercícios Resolvidos Exercício 4.1 i. Sejam w= ( w1,w2,w3,w4) e w’= (w’1,w’2,w’3,w’4) elementos de W e . Temos:( w1+ w’1, w2+w’2, w3 + w’3, w4 + w’4) e w= (w1,w2,w3,w4). a. (w1+ w’1) – 2(w2+w’2) – (w4 + w’4) =( w1-2w2 - w4) +( w’1-2w’2 - w’4) = 0 +0 = 0 ( fechado para soma). b. (w1) – 2(w2) –(,w4) = (w1 – 2w2 –w4) = 0 = 0 ( fechado para o produto por escalar). ii. Se b , b’ são vetores de W existem x e x’ 2 tais que Ax = b e Ax’= b’,logo b+b’= Ax + Ax’= A(x + x’) e b = Ax = A(x) o que mostra que W é fechado para soma e produto por escalar. iii. Pelas propriedades do produto matriz-vetor temos que se x e x’ 3 e então A(x+x’) = Ax+Ax’= 0 + 0 = 0 e A(x)=Ax = 0 = 0 provando que W é SEV de 3. iv. Se r(t) é uma reta em 3 que contém a origem existe um vetor s = (a,b,c) tal que r(t) = t s , t. (É fácil verificar que r(t) é fechado para soma e produto por escalar.) v. Se é um plano passando na origem então existe um vetor n = (a ,b, c) T (vetor normal ao plano) tal que = {x 3 ; x. n =0} = {x 3 ; ax1 + bx2 + cx3=0} = { x 3 : Ax = 0}, onde A = (a b c). Ou seja, o plano é o conjunto das soluções de uma equação linear homogênea Ax = 0. O mesmo argumento do item iii nos garante que se trata de um conjunto algebricamente fechado para soma e produto por escalar. Exercício 4.3 i. Certo. Se v , w W então v = ( v1 , 2v1) e w = ( w1 , 2w1 ). Logo v +w = ( v1+ w1 , 2( v1+ w1)) W. Se v = ( v1 , 2(v1)) W. ii. Falso. 0 = ( 0 , 0 ) T W. iii. Certo. Veja que 0 W e que: SEV.1 Se v , w W então: 2v1 - v2 +2 v3 = 0 e v1 = v 3 2w1 - w2 +2 w3 = 0 e w1 = w 3 III 45 45 Portanto, 2(v1+w1) – (v2 + w2) + 2(v3 + w3) = 0 e v1 + w1 = v3 + w3 v+w W SEV.2 Se v W e , então 2(v1) – (v2) +2 (v3) = (2v1 - v2 +2 v3) = 0 v1 = v 3 v1 = v 3 Portanto, v também atende às condições exigidas para estar em W iv. Falso. v = ( 1,0) T e w = ( 0 , 1) T são elementos de W mas v + w = ( 1 , 1) não pertence a W. v. Certo. Basta notar que W= {( 0 , 0) T }. vi. Falso. ( 0 , 0 ) W vii.Falso. v = ( 1 , 1 ) e w = ( 1 , -1) são elementos de W mas v +w = ( 2 ,0 ) W. viii. Certo. 0bserve que W é, neste caso, um círculo de raio 1, com centro em no ponto ( 0 1). Neste caso está fora de nossa lista do exemplo 4.4, onde estabelecemos que os únicos SEVs do 2 são W = {0}, W = 2 e W = reta contendo a origem. Alternativamente, veja que (0 2) W, mas 2*(0 2) = (0,4) W. ix. Falso. Basta ver que um conjunto formado por duas retas no 2 não é subespaço. Por exemplo, se W1 é a reta de equação y = -x e W2 a reta de equação y = x, W = W1 W2, não é um SEV do 2 (está fora da lista do exemplo 4.4). Alternativamente, veja que a soma de (1 1) W1 com (1 -1) W2 dá (2 0) W = W1 W2 x. Falso. v = ( -1 , 1) W mas -v = ( 1 , -1 ) W. Exercício 4.5+ i. Como W é um SEV de 3 e x W temos que r(t) = tx W para todo t . ii. Seja w um vetor no plano que contém x0 e y0 . Então w é uma combinação linear de x e y ( ver figura 4.1 abaixo ) e como W é um SEV temos que w W figura 4.1 iii - Seja ( x1 , x2 , x3 ) uma solução não trivial de Ax = 0. Suponhamos que x1 0. Então teremos que A (1) = - x2/x1A (2) – x3/x1A (3) , isto é , A (1) está no plano gerado por 0 , A (2) e A (3) . Analogamente, se x2 ≠ 0, obteríamos A (2) no plano gerado por 0, A (1) e A (3) e se x3 ≠ 0, obteríamos A (3) no plano gerado por 0, A (1) e A (2) Exercício 4.7 w = x +y x x y y 46 46 Se A = 1 1 1 1 então Col(A) = { v = x1A (1) + x2A (2) ; x1 ,x2 }= { x 1 1 , x }. Como Posto(A) = 1 , Ax = 0 tem apenas uma solução canônica, no caso, S (1) = 1 1 e portanto N(A) = { x 2 ; Ax = 0} = {S(1)}. Ilustrações: figura 4.2 figura 4.3 Exercício 4.9 i. Para verificar que 2 = Ger( v , w ) vamos escolher um vetor x = ( x1 , x2 ) T qualquer do 2 e mostrar que existem constantes c1 e c2 reais tais que x = c1v + c2w. 1 0 1 1 21 2 1 cc x x equivale ao sistema 122212 11 xxcccx cx Portanto qualquer vetor (x1 , x2) T 2 se escreve como combinação linear de v e w, ou seja: 1 0 )( 1 1 121 2 1 xxx x x Pelo ítem i todo vetor do 2 é combinação linear das colunas de A, que por definição é a Col(A). Para achar o N(A) basta achar o conjunto das soluções de Ax = 0 e concluir que o mesmo tem apenas a solução trivial. ii. Proceda como no ítem i, verificando que para todo b2 ATx = b tem sempre solução e se A T x = 0 então x = 0. Exercício 4.11 i. A matriz A é linha equivalente a matriz U = 1 1 0 0 1 1 0 0 1 , logo A tem posto 3, o que implica que para todo b 3 Ax = b tem sempre solução, ou seja, bCol (A) . Usando novamente que Posto(A) = 3 concluimos que o sistema Ax = 0 tem apenas a solução trivial, isto é, N(A) = {0}. ii. Análogo ao ítem i trocando apenas A por A T . Exercício 4.13 i. Certo. Note que Col(A) 2 e Col(AT) 3. ii. Errado. Col(A) = { (x1 , 0 ) ; x1 } e Col(A T ) = { (0 , x2) ; x2 } iii. Certo. Neste caso temos que A = A T . Col(A) N(A) ) 47 47 iv Certo. Neste caso para todo b 2 o sistema Ax = b tem uma única solução o que acarreta Posto(A) = 2 implicando que A é invertível. v. Errado. Col 12 12 é a reta de equação y = x e Col 12 24 é a reta de equação y = x/2. vi. Errado. Análogo ao itemv acima. vii. Certo. Supondo que A é uma matriz 2x2 teremos que Posto(A) = Posto(A T ) = 2, logo para todo b 2 A T x = b tem uma única solução, isto é, Col(A T ) = 2. viii. Certo. Ax = x1A (1) + x2A (2) + . . .+ xnA (n) , logo Ax =b terá solução se e somente se b for uma combinação linear das colunas de A, ou equivalentemente, se b Col(A). ix. Certo. ( Desde que o múltiplo k seja diferente de zero) Suponha que b = c1A1 +c2A2 + . . .ciAi+. . . + cmAm =c1A1 +c2A2 + . . .ci/k(kAi)+. . . + cmAm Exercício 4.15 i. Certo. Observe que neste caso N(A) 3 e N(AT) 2. ii. Errado. Considere a matriz A = 1 1 0 0 .Temos que N(A) é a reta x2 = -x1 e N(A T ) é a reta x1 = 0. iii - Certo. Neste caso, Posto(A)=Posto(A T ) = 2 os sistemas Ax = 0 e A T x = 0 têm apenas a solução trivial. Exercício 4.17 Por definição W1 = { w1 = 1 1 1 , 1 } e W2 = { w2 = 2 1 1 , 2 }.Verificar que 2 = W1 + W2 é provar que se v v 1 2 2 então existem 1 e 2 números reais tais que v v 1 2 = 1 1 1 + 2 1 1 o que equivale resolver o sistema 1 2 1 1 2 2 v v o qual tem solução 1 = v v1 2 2 e 2 = v v1 2 2 . Exercício 4.18+ i. Verificando SEV.1: Sejam v , v’ V então v = w1 + w2 e v’=w’1 + w’2 com w1 , w’1 W1 e w2 , w’2 W2. Neste caso, v + v’= ( w1 + w’1) + (w2 + w’2). Como W1 e W2 são SEVs do n temos que ( w1 + w’1 ) W1 e (w2 + w’2) W2 , isto é , v + v’V. Verificando SEV.2: Se temos que v = (w1+w2)= w1 + w2, mas w1W1 e w2 W2 o que mostra que v V. ii. Sejam Amxn e Bmxk matrizes com o mesmo número de linhas e considere a matriz D = ( A B ). Devemos verificar que Col(A) + Col(B) = Col(D). Se u Col(A) + Col(B) então u = + Col(D) Evidentemente que Col(D) Col(A) + Col(B). 48 48 iii. Basta notar que Posto( A C ) = 4. Exercício 4.19 Se v W = Ger( v1 ,v2, v3 , v4 , v5 ) então v = c1v1 + c2v2 + c3v3 +c4v4 + c5v5 com ci K. Usando a propriedade associativa, válida em n, teremos: v = (c1v1 + c2v2 + c3v3) +(c4v4 + c5v5), mas: w1 = (c1v1 + c2v2 + c3v3) W1 e w2 = (c4v4 + c5v5) W2, portanto, v = w1 + w2 com w1 W1 e w2 W2. Isto mostra que W W1 + W2. A outra inclusão também é óbvia. Exercício 20+ É fácil verificar que ( W1 W2) W3 = W1 W2 W3. O exercício pedido segue-se da demostração a seguir: seja V = V1 V2 e suponha que v = v1 + v2 e v = v’1 + v’2 com v1 , v’1 V1 e v2 , v’2 V2. Teremos então que v1 + v2 = v’1+v’2 implicando que v1 – v’1= v’2 - v2 V1 V2 ={0}. Portanto v1 = v’1 e v’2 = v2. Exercício 4.21 i. Verifique que no exercício 4.17 2 = W1 W2. Já verificamos que 2 = W1 + W2. Se tivermos v = x 1 1 W1 e w = y 1 1 W2, com v = w, teremos que 1 1 1 1 0 0 x y o que implica x = y = 0 , isto é, W1 W2 é formado apenas pelo elemento neutro, e portanto por definição, 2 = W1 W2. ii. Verifique que no exercício 4.16 3 = W1 W3. Estamos supondo que o leitor já verificou que 3 = W1 + W3. Analogamente ao ítem i suponha que 1 0 0 1 1 1 0 1 1 1 2 3 x x x e conclua que x1= x2 = x3 = 0. iii. Supondo que o leitor já provou que 3 = W1 + W4 vamos provar que 3 não é soma direta de W1 e W4. Para isto basta notar que , v = 1 0 1 + 0 1 1 = 1 1 2 W1 W4 . Exercício 4.23 i. Note que W1 e W2 são planos que passam na origem e normais aos vetores ( 2 , -1 ,-1) T e ( 1, 1 ,1 ) T respectivamente. Com estes dados faça um desenho e veja que W1 W2 é uma reta de 3 passando na origem. ii. Para achar W1 W2 equivale resolver o sistema Ax = 0 onde A = 111 112 , cuja solução geral é 0 1 0 . Logo W1 W2 = Col( 0 1 0 ). 49 49 Exercício 4.25 Suponha que x N(A) N(B) então teremos que Ax = 0 e Bx = 0 o que implica : ( A1x A2x . . . Amx B1x B2x . . . Bmx ) T = ( 0 0 . . . 0 0 0 . . . 0 ) T ou seja A B x 0 , isto é, x N( A B ). Concluímos que N(A) N(B) N( A B ). Por outro lado se A B x = 0 então Ax =0 e Bx =0 e isto garante que N(A) N(B) = N( A B ). Exercício 4.27 + Se v V, existem constantes c1 , c2 , . . . , cm tais que v = c vi i i m 1 . Como cada vi V’ segue-se que civi V’ para todo i = 1, 2,. . . m. e portanto v = c vi i i m 1 V’. Exercício 4.29 i. Sabemos que se Anxn tem posto n então para todo b n o sistema Ax = b tem solução única, logo Col(A) = n ii. Note que uma forma escada de A é uma matriz triangular superior sem zero na diagonal, portanto a forma escada canônica de A é a matriz identidade, logo A é linha equivalente a matriz identidade e portanto Lin(A) = Lin(I) = n. Exercício 4.31 i. Note que A (1) e A (4) geram um plano no 3 pois são LI e como A(3) = A(1) + A(4) segue-se que os tres vetores são coplanares. ii. Basta verificar que o sistema 0 0 1 x 10 01 11 não tem solução. Exercício 4.33+ Como v1 , v2 , . . . , vn são LDs existem constantes c1 , c2 , . . . ,cn não todas nulas tais que: c1v1 + c2v2 + . . . +cnvn = 0. Seja 1 k n tal que ck 0. Neste caso teremos: vk = ( -c1/ck)v1- ...- (c(k-1)/ck)v(k-1) - (c(k+1)/ck)v(k+1) - ...-( cn/ck)vn. Exercício 4.35+ Que Ger( v1 , v3 , . . . , vn ) Ger( v1 , v2 ,v3 , . . . , vn ) é óbvio. Vamos verificar a outra inclusão. Suponha que v = c1v1 +c2v2 + c3v3+ . . . + cnvn Ger( v1 , v2 ,v3 , . . . , vn ). Por hipótese existem constantes 1 ,3,. . .,n tais que v2 = 1v1 + 3v3 + . . . +nvn. Logo v = c1v1 +c2(1v1 + 3v3 + . . . +nvn ) + c3v3 + . . . +cnvn = 50 50 =(c1c21)v1 + (c3c23)v3 + . . . +(cnc2n)vn Ger(v1 , v3 , . . . , vn ). Exercício 4.37 + 4.15.i Verifique que para todo b= b b 1 2 = b1 0 1 + b2 1 0 e que Posto(I) = 2 4.15.ii. Verifique que A = tem posto 2 e conclua 4.15.v - Verifique que para todo b n Inxn x = b tem uma única solução e conclua que é uma base de n . Exercício 4.39 i. Seja v o único vetor de . Se v = 0 , Ger(v) = { 0 }. Se v = ( v1 , v2 ) T ( 0 , 0 ) então v não gera ( v2 , - v1) T . (Faça uma ilustração geométrica deste fato). ii. Sejam v1 , v2 , v3 tres vetores de e A = ( v1 v2 v3 ) a matriz cujas colunas são os vetores v1 , v2 , v3. Posto(A) 2 , logo o sistema Ax = 0 tem uma solução não trivial o que mostra que suas colunas não podem ser LI. ii. Como sabemos que 2 tem bases, juntando i e ii concluímos que toda base do 2 tem exatamente dois elementos. Exercício 4.41 i - Aplicando o algoritmo da eliminação de Gauss a A = 110 011 121 , obtemos 110 011 001 000 110 121 LeU ii - Como posto(A) = Posto(U) = 2, pelo que vimos nos exemplos 4.14.ii e 4.14.viii, W é um plano gerado pelos vetores A (1) e A (2) . iii. Isto é imediato verificar. iv. Se Ax = b, tivesse soluções, isto significaria LUx = b. Mas Lb = b e L é invertível, o que significa que x satisfaria Ux = b. Mas isto não pode. v. – Se b está em Col(A), isto significa b = c1A (1) + c2A (2) + + c3A (3) = Ac, ou seja, que Ac = b, contradizendo o item anterior vi - Como está na sugestão, ao escolher um b tal que Lb = b e tal que Ux = b não tem solução, então b estará em 3- W. Sempre que se aplicar a eliminação de Gauss sem trocar de linhas a uma matriz que não tenha posto igual ao número de linhas, ao escolher b = (0 0 0 ... 0 1) T , teremos que Lb = b e Ux = b não terá solução. Portanto um tal b não estará no espaço das colunas de A. Exercício 4.43 51 51 Seja A = ( 2 , 3 , -1 ). O SEV em questão é o núcleo de A. Logo uma base é formada pelas soluções canônicas de Ax = 0, que são: { ( 1/2 , 0 , 1 ) T , ( -3/2 , 1 ,0 ) T }.Portanto sua dimensão é 2. Exercício 4.45 i.- Para aplicar o algoritmo desta seção, aplicamos o algoritmo da eliminação de Gauss calculamos a matriz U = 1 1 0 1 0 1 2 2 0 0 0 0 , na forma escada linha-equivalente à A. Seus pivôs estão na primeira e segunda e segunda colunas, logo as colunas A (1) = ( 1, -1 , 0 ) T e A (2) = ( 1 , 0 , 1) T de A formam uma base para o espaço das colunas de A. Ao armazenarmos as linhas não nulas de U em = { U1 , U2} = {(1 1 0 1), (0 1 2 2)} obtemos uma base para Lin(A) = Col(A T ). As soluções canônicas de Ux = 0 formam uma base de N(A), o que nos dá = {(2 -2 1 0)T , (1 -2 0 1)}. Para encontrar uma base de N(AT), bastaria proceder de modo análogo para AT, fazendo a eliminação de Gauss de A T e depois encontrando as soluções canônicas de A T x = 0 Exercício 4.47 i. Errado. Os vetores v1 , v2 , v2 são LD (verifique isto) logo qualquer conjunto de vetores contendo v1 , v2 , v3 também é LD não podendo formar uma base para 4 . ii. Certo. Os vetores v1 , v2 , v3 são LI ( verifique ), mas não geram o 4 pois dim(4) = 4. Logo existe um vetor v4 que não é combinação linear de v1 , v2 , v3 e portanto os vetores v1 , v2 , v3 , v4 são LI ( ver exercício 4.33+) formando uma base de 4. iii. Errado. Seja A a matriz cujas colunas são os vetores dados. Temos que Posto(A) =3 e portanto dim(Col(A))=3, isto é, as colunas de A não geram o 4, implicando que quaisquer quatro colunas escolhidas continuam não gerando o 4 e não formando portanto uma base. iv. Certo. Seja A a matriz cujas colunas são os vetores dados. Verifique que Posto(A) = 4 e portanto suas colunas geram o 4 e pelo 4.14.viii podemos escolher de forma adequada 4 colunas de A de modo a formar uma base para 4. v. Errado. Veja, por exemplo, que qualquer conjunto finito que contenha as colunas da matriz identidade 2x2 gera o 2. vi.Certo. Ver exercício 4.35 + vii. Certo. Seja dim(V) = p e V=Ger(v1 , v2 ,. . .,vp). Se os vetores v1 , v2 ,. . .,vp forem LD então pelo exercício 4.35+ V seria gerado por p-1 desses vetores e portanto dim(V) < p. viii. Errado. Tome V= 6 e o conjunto formado pelas cinco primeiras colunas da matriz identidade 6x6. ix. Certo. Seja = { v1 , v2 , v3 ,v4 ,v5 }. Se V = Ger(v1 , v2 , v3 ,v4 ,v5 ) então é uma base e dim(V)=5. Caso contrário podemos construir uma base para V contendo o conjunto e portanto dim(V) > 5. (Ver Teorema Chave 1) x. Certo. O teorema chave 1 nos garante isto. xi. Certo. Caso contrário poderíamos encontrar uma base para V contendo propriamente os vetores dados (ver teorem chave 1) e teríamos que dim(V) > p. 52 52 xii. Certo. Se ={ v1, v2, . . ., vp} uma base de W então é um conjunto de vetores LI de V e usando o teorema-chave 1, podemos completar de modo a formar uma base de V. Isto significa que o número de vetores de uma base de V é maior ou igual a p. xiii. Errado. No 3, o eixo z tem dimensão 1 e não está contido no plano-xy que tem dimensão 2. Exercício 4.49 i. A matriz A cujas colunas são os vetores de tem posto 3, logo dim(Col(A)) = 3. Como tem quatro elementos não pode constituir uma base. ( Neste caso é um conjunto LD ). ii. Seja A como no ítem i. Ache uma solução particular Sp para Ay = x x x 1 2 3 (Tal solução existe pois as colunas de A geram o 3 ). Se S(1) é a solução canônica de Ay = 0 verifique que x x x 1 2 3 = A( S(1) + Sp ) para todo . Eis uma maneira de escrever x x x 1 2 3 de várias formas diferentes como combinação linear dos elementos de . Exercício 4.51 i. Certo. Se V = Ger( v1 , v2 , v3 ) e sendo tais vetores LI então {v1, v2 , v3 } é uma base de V e neste caso dim (V) = 3. ii. Certo. Como dim(V) = 4 existe v4 V tal que v4 não é combinação linear de v1 ,v2 , v3. É fácil verificar que {v1 ,v2,v3 ,v4} é um conjunto de vetores LI, logo forma uma base para V pois dim(V) = 4. Alternativamente, basta se reportar ao teorema-chave 1. iii. Certo. Confira o Teorema-Chave 1. iv. Certo. Se v V = VA VB , então v = vA +vB com vA VA e vB VB. Como vA = 1A (1) +... +kA (k) é combinação linear dos elementos de = {A(1), ..., A(k)} e vB = 1B (1) +... +kB (p) é combinação linear dos elementos de = {B (1) , ..., B (p) } segue-se que v = vA + vB = 1A (1) +... +kA (k) + 1B (1) +... +kB (p) é combinação linear dos elementos de , isto é, gera V. Suponha que vA + vB = 1A (1) +... +kA (k) + 1B (1) +... +kB (p) = 0. Então vA = -vB = 0, pois isto significa que vA e vB VA VB = { 0 }, já que V = VA VB. Como os vetores de são LI, vA = 0 garante que 1=... =k = 0. Analogamente vB =0 garante 1=... =k = 0. Ou seja, é LI 53 53 v - Certo. Se um conjunto com k < n vetores gerar V, mas não for LI, a observação *** nos garante que podemos obter uma base de V escolhendo adequadamente alguns destes k vetores. Mas então dim(V) k < n, o que contradiz dim(V) = n vi - Certo. Se é um conjunto com k > n vetores LI de V, o teorema chave 2 nos garante que podemos completar para obter uma base de V. Mas isto signfica que dim(V) k > n, o que contradiz dim(V) = n Exercício 4.53 i. Seja A a matriz cujas colunas são os vetores de ’. Para provar que ’ é uma base de 14 basta verificar que Posto(A) = 4. Para achar as coordenadas de b na base ’ resolvemos o sistema Ax = b que tem como solução ( única neste caso ) x = (-5,4,2,2) T , isto é, [b] ’ = x. ii - Para calcular a matriz C devemos resolver os quatro sistemas Ãx = y onde à é a matriz cujas colunas são os vetores da base = {(1,1,0,0 )T , (0,1,1,0)T, (0, 0,1,1)T , (0,0,0,1)T } e y percorre os vetores da base ’. As soluções dos sistemas são respectivamente: C (1) = (1,0,1,-1) T , C (2) = (1,-1,2,-3) T , C (3) = (0,1,0 ,0) T e C (4) = (1,0,0,3) T . O vetor [b] é a solução do sistema Ãx = b a qual é dada por [b] = ( 1, -2 , 3, -1 ) T . É fácil verificar que C = (C (1) C (2) C (3) C (4) ) é tal que [b] = C[b] ’. Exercício 4.55 Para achar as bases para os subespaços pedidos proceda como no Exercício 4.47 e teremos: base para: Col(B): { ( 1, 2 ) T , (-1 , 0) T }. Col (B T ): {( 1 , -1 , 2 ) T , ( 2, 0 , 1) T }. N(B): { ( -1/2 , 3/2, 1) }. N(B T ) = { 0 }. Exercício 4.57 i. Para verificar que ={ M(1) , M(2) , M(3) } é uma base de 3 basta provar que Posto(M)=3. ( Por que ? ). Uma forma escada para M é U = 100 220 211 e portanto Posto(M)=3. ii. Para achar y = [x] devemos resolver o sistema My = x, o que nos dá y = 0 2/1 2/1 iii. Seja y = y y y 1 2 3 = [x] . Por definição temos que x = y1M (1) +y2M (2) +y3M (3) o que equivale dizer que x =My = M[x], ou seja, que [x] = M -1 x. 54 54 Exercício 4.59 i. A e B são respectivamente linha-equivalentes as matrizes escada: UA = 1 2 1 0 1 0 1 1 2 1 0 0 2 5 1 UB = 1 1 0 0 1 0 1 1 2 2 0 0 2 3 2 Resolvendo o sistema UAx = 0 encontraremos SA = 7 2 1 2 1 2 1 2 5 2 1 2 1 0 0 1 / / / / / / Resolvendo UBx = 0 encontraremos SB = 2 1 2 3 1 2 1 3 2 0 1 1 0 / / / . ii. Que N(A) = Col(SA) e N(B) = Col (SB) decorrem da própria definição de Núcleo e espaço das colunas de uma matriz. iii. Vamos verificar que N(A) N (B) = {0}. Para isto é suficiente provar que se SAx = SBx então x = 0. ( Verifique que isto é verdade). Ou então verificar que = N(A) N (B) = {0}, o que corresponde a verificar que o posto de é 5 (***Falta revisão daqui em diante***) Exercício 4.61+ - Observe que se W = N(A), já sabemos reescrevê-lo na forma W = Col(S). Basta que S seja a matriz das soluções canônicas. Este exercício visa verificar que a recíproca é verdadeira, ou seja, se um SEV é descrito por um conjunto de geradores, como reescrevê-lo na forma de núcleo de uma outra matriz. Isto pode ser útil, por exemplo, para achar a interseção de SEVs, como no exercício anterior. Suponha que A é mxn, W = Col(A) = [A (1) , A (2) , , A(n) ] e que Posto(A) = p i - Mostre que se B é matriz pxm, tal que BA = 0, então Col(A) N(B). ii - Denote por Y a matriz cujas colunas são as soluções canônicas de A T y = 0 e use o item anterior para mostrar que Col(A) N(YT) iii - Verifique que Y é mx(m-p) de posto m-p e conclua que dim(N(Y T )) = p. iv - Conclua de ii e iii que W = Col(A) = N (Y T ). 55 55 Exercício 4.61 Seja A uma matriz mxn de posto p. i. Suponha que y = Ax Col(A). Vamos mostrar que By=0, isto é , y N (B). Mas temos que By = B(Ax) = (BA)x = 0 pois BA = 0 por hipótese. Segue-se que Col (A) N (B). ii. Para usar o ítem anterior vamos verificar que YTA= 0. Temos: (Y T A) T = A T Y = (A T Y (1) A T Y (2) . . . A T Y (m-p) ) . Mas A T Y (i) = 0 pois cada Y (i) é solução de A T x =0. Como (Y T A) T = 0 implica que Y T A = 0. iii. Note que AT é nxm logo cada Y(i) tem m linhas ( número de incógnitas de ATx = 0 ). Por outro lado o posto(A T ) = Posto(A) = p, portanto m-p soluções canônicas (número de incógnitas menos o posto ). Logo Y é uma matriz mx(m-p). Como { Y (1) , Y (2) , . . . , Y (m-p) } é LI temos que dim(Col (Y)) = dim(Col (Y T ))= m-p e como dim(Col (Y T )) + dim(N (Y T )) = m segue-se que dim(N (Y T )) = p. iv. Pelo ítens i e ii temos que Col (A) N (YT)). Por outro lado dim(Col (A)) = Posto(A) = p o que nos leva a concluir que Col (A) = N (Y T ). Exercício 4.63 i. Sejam A = 1 0 0 1 0 1 e B = 1 1 2 1 1 0 , note que W = Col(A) e W = Col (B). Para A teremos: Col (A) = { Ax = A x x 1 2 = x x x 1 2 2 }. Queremos achar uma matriz S = a b c tal que: S x x x 1 2 2 = 0 0 0 para todo vetor x x x 1 2 2 Col (A). ( Isto garante que W N(S) ). Em particular tomando v = 1 0 0 W teremos Sv = 0 o que acarreta a = 0 e para v = 0 1 1 W com Sv = 0 teremos b = -c. 56 56 Logo uma matriz S procurada pode ser S = ( 0 1 -1). Para garantir que N(S) W verifique que se Sv = 0 então v = x x x 1 2 2 . Logo a matriz S acima é tal que N(S) = W. (Note que N(S) é o plano 0x +y -z = 0. ) Usando um argumento parecido com o anterior encontraremos uma S = ( 1 -1 -3 ) tal que N(S ) = W. ( Note que neste caso N(S ) é o plano x - y -3z =0 ). ii. Pelo exercício 4.25 temos que N(S) N(S ) = N( S S ) = N ( 0 1 1 1 1 3 ) e como a matriz 0 1 1 1 1 3 tem posto 2 o seu núcleo é a reta S (1) = { 4 1 1 } cujo gerador é 4 1 1 . Exercício 4.65* Suponhamos que dim(V) = m , dim(U) = n e dim( UV) = s. Sejam ( UV) = { 1 , 2 , . . . , s } uma base de UV . V = {1 ,2 , . . . ,s ,s+1,. . .,m} uma base de V e U ={1 , 2 , . . . , s, s+1 , . . ., n} uma base de U. Vamos verificar que = U V é uma base de U + V. Que gera U + V é trivial. Vamos provar que é um conjunto de vetores LI. Inicialmente observe que se v UV então v se escreve de maneira única como: v = c11 +c22 + . . . +css +0s+1 + . . . +0m. Seja (d11 +d22 + . . . +dss +ds+1s+1 + . . . +dmm)+(ds+1 s+1 , . . ., dnn) = 0. Então (d11 +d22 + . . . +dss +ds+1s+1 + . . . +dmm) = -(ds+1 s+1 , . . ., dnn) (*) Mas o lado esquerdo de (*) está em UV e pela observação feita acima teremos que ds+1 = . . . = dm = 0 portanto d11 +d22 + . . . +dss +(ds+1 s+1 , . . ., dnn) = 0 implicando que d1 = ... = ds = ds+1 = dn = 0, isto é, U V é uma base de U+V. A relação dim(U+V) = dim(U) + dim(V) - dim( UV) é uma decorrência do fato que n (U V) = n (U) + n (V) - n(U V) Obs. Em geral não é verdade que se é uma base de V e é uma base de U então é 57 57 uma base V+U. No caso do exercício anterior as bases V e U foram construidas a partir de uma base de U V. Exercício 4.67 i. Certo. dim(U+V) dim(3). Se dim(UV) = 0, então dim(U+V) = dim(U) + dim(V) - dim( UV) = 2 + 2 - 0 = 4 ! ii.Falso. U V pode ser um plano passando na origem. iii. Certo. dim(U+V) = dim(U) + dim(V) - dim (U V) mas dim(U+V) é no máximo 5. iv. Falso v. Pelo exercício 4.21 sabemos que N B A = N(A) N (B). Se B A tiver posto 4 N(A) N (B) = {0}. Por exemplo A = 0010 0001 e B = 1000 0100 . vi. Falso. Tome A = 000 000 000 010 001 e B = 000 000 100 000 000 . 58 58 4.8 Questões de natureza numérica sobre posto e dimensão (opcional) Do ponto de vista de uma matemática escrita com números “exatos”, (sem admitir arredondamentos), tanto o conceito de posto de uma matriz como o de dimensão de um SEV do n estão perfeitamente definidos e não contêm nenhuma ambiguidade. No entanto do ponto de vista numérico, há dificuldades, já apontadas na seção observação 3.5. Por exemplo A = 101 110 011 tem posto 2, já que a terceira coluna de A é a diferença das duas primeiras. Qualquer software que você usar, provavelmente, vai lhe indicar isto. Há dois tipos de problemas numéricos envolvidos aquí: i – Do ponto de vista da Matemática “Exata”: Se você somar = 10 ^(-n) a A13, a nova matriz B, deixa de ter, do ponto de vista teórico, posto 2, já que neste caso, a eliminação de Gauss nos dá: B= ))n(^1000 110 011 U 1))n(^101(0 110 011 10)n(^101 110 011 Ou seja, a matriz A tem agora posto 3, no sentido da aritmética “exata”, discutida ao longo de todo este capítulo. Isto provavelmente não seria detectado por softwares que trabalham com ponto flutuante, se n for relativamente grande (no Matlab n 16). Do ponto de vista geométrico, as colunas de A deixam de estar num mesmo plano que a origem, porém por muito pouco. Se desejamos saber se m vetores são ou não LI, do ponto de vista da matemática “exata”, precisamos de softwares que trabalham com aritmética “exata”. Em geral, eles só conseguem fazê-lo com matrizes bem pequenas (***). ii- Do ponto de vista numérico (aritmética com ponto flutuante) Aquí está o problema relevante. Quando se trabalha em problemas reais, usualmente o tamanho das matrizes torna inviável, computacionalmente, que se trabalhe com aritmética exata. Numa situação como a colocada em i, usualmente se trataria a matriz modificada como tendo posto (numérico) dois, para n 16. Ou seja, se as tres colunas de A deixam de ser LD por “ muito pouco” considera-se que isto provavelmente aconteceu por erros de arredondamento. A dificuldade aquí é como trabalhar esta idéia de “muito pouco”. A idéia de posto “numérico” da matriz contem uma ambiguidade importante. Trata-se de uma questão relativamente complexa, que escapa dos nossos objetivos neste texto e admite várias abordagens. A maneira mais simples de tratá-la é fazer com que, na eliminação de Gauss anulemos todas as colunas que forem surgindo abaixo da escada como candidatas a pivô, mas que não disponham de nenhum pivô maior que tol em valor absoluto. Por exemplo, se tol > 10 ^(-n), e aplicarmos a eliminação de Gauss a B, ao final, o algoritmo vai lhe devolver a terceira linha toda nula e lhe dirá que o posto de A é 2. Se seu software permitir que você faça tol = 10 ^(-16), e n = 15, ele lhe devolverá uma U como acima, e dirá que A tem posto 3. Usualmente, os 59 59 softwares que programam algoritmos da Álgebra Linear com ponto flutuante, têm um valor de tol calculado como default, em função dos erros admitidos em cada arredondamento e da matriz considerada. Muitos, como o Matlab, permitem ao usuário especificar o valor de tol, desde que compatível com o erro de arredondamento admissível. De qualquer maneira, é muito fácil incluir esta possibilidade no programa para a eliminação de Gauss (vide exercício 3.57). Nos exercícios abaixo isto será bastante explorado. No capítulo 8 veremos como a idéia de valores singulares de uma matriz permite conceituar com precisão a idéia de posto numérico de uma matriz. Exercícios para serem feitos com o auxílio do computador: 4C.1- Considere as matrizes A e B, com entradas escritas num formato de ponto flutuante, e peça ao seu software que calcule o posto, interpretando os resultados, nos seguintes casos: i - n = 6, sem especificar nada; ii - n = 6, especificando tol = 4; iii - n = 6, especificando tol = 8; iv - n = 16, sem especificar nada; v - n = 16, especificar tol = 20; vi - n = 200, sem especificar nada; vii - n = 200, especificando tol = 300; 4C.2 - Considere duas matriz A e B, com entradas randômicas, 4x4. Seja ainda C uma matriz obtida de A substituindo a quarta linha de A pela soma das tres primeiras e D uma matriz obtida de C somando-lhe 10 (-6) B, E obtida de C somando-lhe 10 (-12) B e F obtida de C somando-lhe 10 (-30) B. Peça ao seu software que calcule, em cada caso, interpretando ainda os resultados colhidos: i - O posto de A, B, C, D, E e F, sem especificar tol ii - O posto de A, B, C, D, E e F fazendo tol = 10 -4 iii - O posto de A, B, C, D, E e F fazendo tol = 10 -13 iv - O posto de A, B, C, D, E e F fazendo tol = 10 -16 v - O posto de A, B, C, D, E e F fazendo tol = 10 -50 4C.3 *** - (Apenas caso seu software trabalhe com aritmética exata. Mathematica, Maple, Derive, pelo menos). Considere Pmxm uma matriz mxm formada apenas com números inteiros e Qmxm a matriz formada a partir de Pn , substituindo a primeira linha de Pn pela soma das demais e Rmxm = Qmxm + 10 -n e mande-o calcular o posto das matrizes abaixo, em cada caso. Você deve se certificar que o computador registrou suas entradas como números em artimética exata e não de ponto flutuante . i - Calcule o posto de Pmxm , Qmxm e Rmxm , para m = 4 e n = 100. ii - Calcule o posto de Pmxm , Qmxm e Rmxm , para m = 4 e n literal. iii - Calcule o posto de Pmxm , Qmxm e Rmxm , para m = 40 e n literal. iv – Considere uma matriz 40x40, com entradas em ponto flutuante e peça ao seu software para calcular-lhe o posto. Compare o tempo gasto nesta operação com as do item anterior 60 60 4C.4 - Peça ao seu software para calcular uma base do espaço das linhas, outra do espaço das colunas e outra do espaço nulo das matrizes C, D e F, do exercício 4C.2, sem especificar tol ao seu software. Justifique as dimensões que você encontrou para cada um dos SEVs. 4C.5 - Faça A= A4x7 e B = B4x7 serem matrizes com entradas aleatórias. i - Peça ao seu computador para calcular uma base para N(A) e outra para N(B). ii – Encontre, entre as colunas de A, uma base para Col(A) iii – Diga, sem fazer mais contas, a dimensão de N(AT) iv – Ache uma base para N(A) N(B). 4C.6 - Escolha matrizes A=A6x3 e B=B6x3, com entradas aleatórias, e forme C= C6x3 , fazendo com que suas duas primeiras colunas sejam as duas primeiras colunas de C e sua terceira coluna seja a soma das três colunas de A, mais as duas primeiras de C. i - Calcule as dimensões de Col(A), Col(B) e Col(C) i - Ache uma base para o SEV Col(A) + Col(B) e verifique se 6 = Col(A) + Col(B) ii - Ache uma base para o SEV Col(A) + Col(C) e verifique que 6 Col(A) + Col(B). Explique por quê isto aconteceu? iii- Voce saberia dizer, sem acionar novamente o teclado do computador, a dimensão de Col(A) Col(C). (Sugestão: Pense no exercício 4.65) 4C.7 - A idéia aquí é usar o exercício 4.61 para escrever Col(A) e Col(C) do exercício anterior como N(S) e N(T), afim de poder achar uma base para a interseção Col(A) Col(C). i – Ache uma matriz Y, cujas colunas são as soluções canônicas de ATx = 0, faça S = YT e verifique que Col(A) = N(S). ii – Faça o mesmo com C, de modo a encontrar T, tal que Col(C) = N(T). iii - Compute uma base de Col(A) Col(C)