Logo Passei Direto
Buscar

Encontre A e B pertencentes aos IR tais que f(x) =3x^3; x <=1 e Ax^2 + B; x > 1.Seja continua nos reais.

limites e continuidade de funçoes.

User badge image

Enviado por nadja lira há 12 anos

Respostas

User badge image

Gabriel Tetsuo Zaidan Matsumura

há 12 anos

Para uma função ser contínua ela deve acatar 2 regras:

1- Os limites laterais são iguais, isto é, lim x->1+ = lim x ->1-
Nesse caso, vemos que.

Lim de x -> 1 da primeira função retorna:

3*(1)³ = 3

Logo, lim x-> 1 de ax²+b deve ser 3.
a(1)²+b=3
a+b=3

Você pode escolher qualquer valor para A e B para que estes retornem f(x)=3 quando lim x->1.

A segunda regra não vai afetar a resposta mas é bom saber:
Quando o limite de f(x) x->n = f(n). A princípio parece complicado mas vamos entender.
O limite de uma uma função quando x tende a um número N deve ser igual à função de N.
Neste exemplo:

f(x)=3x³    -   lim f(x) quando x->1 = f(x)=3(1)³ = 3.
Agora verificamos que o nosso N = 1, só fazer f(1). 
f(1)=3(1)³ = 3.
3=3.

Essa resposta te ajudou?

4
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!