Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
Prof.Dr. Rodrigo P. Lemos Ondas Fórmula de Friis 1 Prof.Dr. Rodrigo P. Lemos Antenas Comunicantes • A comunicação entre uma antena transmissora e uma antena receptora pode ser compreendida a partir dos conceitos de ganho e de área efetiva. • Considere-se duas antenas orientadas na direção de máximo ganho uma da outra e distantes de r entre si. • Sejam Ptrans, Gtrans, e Atrans a potência, o ganho e a área efetiva da antena de transmissão, enquanto que Prec, Grec, e Arec são a potência, o ganho e a área efetiva da antena de recepção. 15.5. Effective Length 611 The definition of h is motivated by the case of a z-directed Hertzian dipole antenna, which can be shown to have h = l sinθθˆθθ. More generally, for a z-directed linear antenna with current I(z), it follows from Eq. (16.1.5) that: h(θ)= h(θ) θˆθθ , h(θ)= sinθ 1 Iin ∫ l/2 −l/2 I(z′)ejkz′ cosθdz′ (15.5.3) As a consequence of the reciprocity principle, it can be shown [996] that the open- circuit voltage V at the terminals of a receiving antenna is given in terms of the effective length and the incident field E i by: V = E i · h (15.5.4) The normal definition of the effective area of an antenna and the resultG = 4piA/λ2 depend on the assumptions that the receiving antenna is conjugate-matched to its load and that the polarization of the incident wave matches that of the antenna. The effective length helps to characterize the degree of polarization mismatch that may exist between the incident field and the antenna. To see how the gain-area relation- ship must be modified, we start with the definition (15.3.1) and use (15.4.5): A(θ,φ)= PRPinc = 1 2 RL|IL|2 1 2η |Ei|2 = ηRL|V| 2 |ZL + ZA|2|Ei|2 = ηRL|Ei · h|2 |ZL + ZA|2|Ei|2 Next, we define the polarization and load mismatch factors by: epol = |E i · h| 2 |E i|2 |h|2 eload = 4RLRA|ZL + ZA|2 = 1− |Γload| 2 , where Γload = ZL − Z ∗ A ZL + ZA (15.5.5) The effective area can be written then in the form: A(θ,φ)= η|h| 2 4RA eload epol (15.5.6) On the other hand, using (15.1.4) and (15.4.1), the power gain may be written as: G(θ,φ)= 4piU(θ,φ) PT = 4piηk 2|F⊥|2 32pi2 1 2 RA|Iin|2 = piη|h| 2 λ2RA ⇒ η|h| 2 4RA = λ 2 4pi G(θ,φ) Inserting this in Eq. (15.5.6), we obtain the modified area-gain relationship [997]: A(θ,φ)= eload epol λ 2 4pi G(θ,φ) (15.5.7) Assuming that the incident field originates at some antenna with its own effective length hi, then E i will be proportional to hi and we may write the polarization mismatch factor in the following form: epol = |hi · h| 2 |hi|2 |h|2 = |hˆi · hˆ| 2 , where hˆi = hi|hi| , hˆ = h |h| 612 15. Transmitting and Receiving Antennas When the load is conjugate-matched, we have eload = 1, and when the incident field has matching polarization with the antenna, that is, hˆi = hˆ∗, then, epol = 1. 15.6 Communicating Antennas The communication between a transmitting and a receiving antenna can be analyzed with the help of the concept of gain and effective area. Consider two antennas oriented towards the maximal gain of each other and separated by a distance r, as shown in Fig. 15.6.1. Fig. 15.6.1 Transmitting and receiving antennas. Let {PT,GT,AT} be the power, gain, and effective area of the transmitting antenna, and {PR,GR,AR} be the same quantities for the receiving antenna. In the direction of the receiving antenna, the transmitting antenna has PEIRP = PTGT and establishes a power density at distance r: PT = dPTdS = PEIRP 4pir2 = PTGT 4pir2 (15.6.1) From the incident power density PT, the receiving antenna extracts power PR given in terms of the effective area AR as follows: PR = ARPT = PTGTAR4pir2 (Friis formula) (15.6.2) This is known as the Friis formula for communicating antennas and can be written in several different equivalent forms. Replacing GT in terms of the transmitting antenna’s effective area AT, that is, GT = 4piAT/λ2, Eq. (15.6.2) becomes: PR = PTATARλ2r2 (15.6.3) A better way of rewriting Eq. (15.6.2) is as a product of gain factors. Replacing AR = λ2GR/4pi, we obtain: PR = PTGTGRλ 2 (4pir)2 (15.6.4) Ptrans, Gtrans, Atrans Prec, Grec, Arec Antena receptoraAntena transmissora Prof.Dr. Rodrigo P. Lemos Antenas Comunicantes • À distância r, a densidade de potência transmitida é dada por: • Strans corresponde à densidade de potência incidente sobre a antena receptora. Assim, a potência recebida é proporcional à área efetiva da antena de recepção: que, substituindo Strans, resulta na Fórmula de Friis para propagação: Strans = dPtrans dA = PEIRP 4!r2 = PtransGtrans 4!r2 Prec = Sinc ! Arec = Strans ! Arec 15.5. Effective Length 611 The definition of h is motivated by the case of a z-directed Hertzian dipole antenna, which can be shown to have h = l sinθθˆθθ. More generally, for a z-directed linear antenna with current I(z), it follows from Eq. (16.1.5) that: h(θ)= h(θ) θˆθθ , h(θ)= sinθ 1 Iin ∫ l/2 −l/2 I(z′)ejkz′ cosθdz′ (15.5.3) As a consequence of the reciprocity principle, it can be shown [996] that the open- circuit voltage V at the terminals of a receiving antenna is given in terms of the effective length and the incident field E i by: V = E i · h (15.5.4) The normal definition of the effective area of an antenna and the resultG = 4piA/λ2 depend on the assumptions that the receiving antenna is conjugate-matched to its load and that the polarization of the incident wave matches that of the antenna. The effective length helps to characterize the degree of polarization mismatch that may exist between the incident field and the antenna. To see how the gain-area relation- ship must be modified, we start with the definition (15.3.1) and use (15.4.5): A(θ,φ)= PRPinc = 1 2 RL|IL|2 1 2η |Ei|2 = ηRL|V| 2 |ZL + ZA|2|Ei|2 = ηRL|Ei · h|2 |ZL + ZA|2|Ei|2 Next, we define the polarization and load mismatch factors by: epol = |E i · h| 2 |E i|2 |h|2 eload = 4RLRA|ZL + ZA|2 = 1− |Γload| 2 , where Γload = ZL − Z ∗ A ZL + ZA (15.5.5) The effective area can be written then in the form: A(θ,φ)= η|h| 2 4RA eload epol (15.5.6) On the other hand, using (15.1.4) and (15.4.1), the power gain may be written as: G(θ,φ)= 4piU(θ,φ) PT = 4piηk 2|F⊥|2 32pi2 1 2 RA|Iin|2 = piη|h| 2 λ2RA ⇒ η|h| 2 4RA = λ 2 4pi G(θ,φ) Inserting this in Eq. (15.5.6), we obtain the modified area-gain relationship [997]: A(θ,φ)= eload epol λ 2 4pi G(θ,φ) (15.5.7) Assuming that the incident field originates at some antenna with its own effective length hi, then E i will be proportional to hi and we may write the polarization mismatch factor in the following form: epol = |hi · h| 2 |hi|2 |h|2 = |hˆi · hˆ| 2 , where hˆi = hi|hi| , hˆ = h |h| 612 15. Transmitting and Receiving Antennas When the load is conjugate-matched, we have eload = 1, and when the incident field has matching polarization with the antenna, that is, hˆi = hˆ∗, then, epol = 1. 15.6 Communicating Antennas The communication between a transmitting and a receiving antenna can be analyzed with the help of the concept of gain and effective area. Consider two antennas oriented towards the maximal gain of each other and separated by a distance r, as shown in Fig. 15.6.1. Fig. 15.6.1 Transmitting and receiving antennas. Let {PT,GT,AT} be the power, gain, and effective area of the transmitting antenna, and {PR,GR,AR} be the same quantities for the receiving antenna. In the direction of the receiving antenna, the transmitting antenna has PEIRP = PTGT and establishes a power density at distance r: PT = dPTdS = PEIRP 4pir2 = PTGT 4pir2 (15.6.1) From the incident power density PT, the receiving antenna extracts power PR given in terms of the effective area AR as follows: PR = ARPT = PTGTAR4pir2 (Friis formula) (15.6.2) This is known as the Friis formula for communicating antennas and can be written in several different equivalent forms. Replacing GT in terms of the transmitting antenna’s effective area AT, that is, GT = 4piAT/λ2, Eq. (15.6.2) becomes: PR = PTATARλ2r2 (15.6.3) A better way of rewriting Eq. (15.6.2) is as a product of gain factors. Replacing AR = λ2GR/4pi, we obtain: PR = PTGTGRλ 2 (4pir)2 (15.6.4) Prec = PtransGtransArec 4!r2 Ptrans, Gtrans, Atrans Prec, Grec, Arec Antena receptoraAntena transmissora Prof.Dr. Rodrigo P. Lemos Antenas Comunicantes • Substituindo-se Gtrans em termos da área efetiva da antena transmissora, tem-se: • Alternativamente, pode-se escrever a área efetiva da antena receptora em termos do seu ganho: Prec = Ptrans 4!Atrans "2 # $% & '( Arec 4!r2 = PtransAtransArec "2r2 Prec = PtransGtrans !2Grec 4" # $% & '( 4"r2 = PtransGtransGrec!2 4"r( )2 Prof.Dr. Rodrigo P. Lemos Antenas Comunicantes • Analisando a fórmula de Friis, pode-se identificar o termo associado à atenuação da potência recebida em função do quadrado da distância r percorrida no espaço livre: • Alternativamente, pode-se escrever esse termo como Ganho: Assim, a Fórmula de Friis pode ser escrita como: ou, em decibéis: Gespaço! livre = 1 Lespaço! livre = " 4#r $ %& ' () 2 Lespaço! livre = 4"r # $ %& ' () 2 Prec = PtransGtrans 1 Lespaço! livre Grec Prec.dB = Ptrans.dB +Gtrans.dB ! Lespaço! livre.dB +Grec.dB dB Prof.Dr. Rodrigo P. Lemos Exemplo • Um satélite em órbita geoestacionária transmite sinais de TV para uma estação terrena distante 40.000 km. Considere que as antenas parabólicas do satélite e da estação têm diâmetros de 0,5 m e de 5 m, respectivamente. A eficiência de apertura de ambas é de 60%. O satélite transmite com potência de 6 W na frequência de descida de 4GHz. Calcule os ganhos das antenas em dB e a potência total recebida. O comprimento de onda em 4 GHz é λ = 7,5 cm. Os ganhos das antenas são dados por: A potência de transmissão do satélite é dada em dB por: A perda no espaço livre é: Assim, pela Fórmula de Friis, a potência recebida será: 6 Gmáx.rec = ea !d " # $% & '( 2 ) Gsat = 263,2 = 24dB Gterra = 26320 = 44dB Ptrans.dB = 10 log 6( ) = 8 dB Lespaço! livre = 4"r # $ %& ' () 2 = 4 *1019 + Lespaço! livre.dB = 196dB Prec.dB = Ptrans.dB +Gtrans.dB ! Lespaço! livre.dB +Grec.dB = 8 + 24 !196 + 44 = !120dB " Prec = 10!12W ! Obrigado! 7