Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
Lista de Exerc´ıcios 0 1. Resolva as inequac¸o˜es: (a) 3x+ 3 < x+ 6 (b) x+ 6 ≤ 6x− 2 (c) x− 3 > 3x+ 1 (d) 2x > 3x 2. Estude o sinal: (a) 3x+ 1 (b) 2− 3x x+ 2 (c) (2x− 1)(x2 + 1) (d) 2− x 3− x 3. Resolva as inequac¸o˜es: (a) (x− 3)(x2 + 5) > 0 (b) x(x2 + 1) ≥ 0 (c) (2x+ 1)(x2 + x+ 1) ≤ 0 (d) x x2+x+1 ≥ 0 4. Verifique as identidades: (a) x2 − a2 = (x− a)(x+ a); (b) x3 − a3 = (x− a)(x2 + ax+ a2); (c) xn − an = (x − a)(xn−1 + axn−2 + . . .+ an−1), onde n 6= 0 e´ um natu- ral. 5. Simplifique: (a) 4x2 − 9 2x+ 3 (b) 1 x2 − 1 x− 1 (c) (x+ h)2 − x2 h (d) x4 − p4 x− p 6. Fatore o polinoˆmio P (x) (a) P (x) = x3 − 2x2 − x− 2 (b) P (x) = x4 − 3x2 + x2 + 3x− 2 (c) P (x) = x3 + 2x2 − 3x (d) P (x) = x3 − 1 7. A afirmac¸a˜o: “quaisquer que sejam x e y, x < y ⇔ x2 < y2”e´ falsa ou ver- dadeira? Justifique. 8. Resolva as equac¸o˜es: (a) |x+ 1| = 3 (b) |2x+ 3| = 0 (c) |2x− 1| = 1 (d) |x| = 2x+ 1 9. Resolva as inequac¸o˜es: (a) |2x2 − 1| < 1 (b) |x+ 1| < |2x− 1| (c) |x+ 3| > 1 (d) |x− 2|+ |x− 1| > 1 10. Elimine o mo´dulo: (a) |x+ 1|+ |x| (b) |2x− 1|+ |x− 2| (c) |x− 2| − |x+ 1| (d) |x|+ |x− 1|+ |x− 2| 11. Expresse o conjunto das soluc¸o˜es das in- equac¸o˜es dadas em notac¸a˜o de interva- los: (a) x2 − 3x+ 2 < 0 (b) x2 + x+ 1 > 0 (c) x2 − 9 ≤ 0 (d) 2x−1 x+3 > 0 1