Prévia do material em texto
Exercícios: 1. Em um grupo de 42 turistas, todos falam inglês ou francês; 35 falam inglês e 18 falam francês. Quantos turistas falam inglês e francês? A = 35 B = 18 A B = 42 A B = 35 + 18 - 42 = 11 2. Foi feito um levantamento entre os assinantes de seu boletim informativo, em preparação para o lançamento de seu novo programa de computador. Os resultados de seu levantamento revelam que, dos 87 assinantes, 68 têm um sistema baseado em Windows em suas máquinas, 34 têm disponível um sistema Unix e 30 têm acesso a um Mac. Além disso, 19 têm acesso a ambos, Windows e Unix, 11 têm acesso a ambos, Unix e Mac, e 23 podem usar tanto Windows quanto Mac. Quantos assinantes têm acesso aos três tipos de sistema? Solução: A = {Windows} B = { Unix} C = { Mac} A = 68 B = 34 C = 30 A B = 19 B C = 11 A C = 23 A B C = x A B C = 87 68 + 34 + 30 – 19 – 11 – 23 + x = 87 x = 11 Resp: 11 têm acesso aos três sistemas. 3. Quantas pessoas são necessárias para se ter certeza que haverá pelo menos duas delas fazendo aniversário no mesmo mês? Resp: Considerando que o mês tem 30 dias, serão necessárias 31 pessoas fazendo aniversário no mês. 4. Um serviço de empregados domésticos por computador tem uma lista de 50 homens e 50 mulheres. São selecionados nomes aleatoriamente. Quantos nomes devem ser selecionados para se garantir que apareçam dois nomes de pessoas do mesmo sexo? Resp: 3 5. Um grupo de estudantes está planejando comprar pizzas. Se 13 comem de calabresa, 10 comem de salame, 12 comem de queijo, 4 comem tanto de calabresa quanto de salame, 5 comem tanto de salame quanto de queijo, 7 comem tanto de calabresa quanto de queijo e 3 comem de tudo, calcule quantos estudantes há no grupo. Solução: A = {estudantes que comem calabresa} B = {estudantes que comem salame} C = {estudantes que comem queijo} A = 13 B = 10 C = 12 A B = 4 B C = 5 A C = 7 A B C = 3 A B C = 13 + 10 + 12 – 4 – 5 – 7 + 3 = 22 6. Um feirante vende apenas brócolis, cenoura e quiabo. Em um dia o feirante atendeu 207 pessoas. Se 204 pessoas compraram brócolis, 152 compraram cenoura, 25 compraram quiabo, 64 compraram brócolis e cenoura, 12 compraram cenoura e quiabo e 9 compraram os três produtos, determine quantas pessoas compraram brócolis e quiabo. Solução: A = {pessoas compraram brócolis} B = {pessoas compraram cenoura} C = {pessoas quiabo} A = 114 B = 152 C = 25 A B C = 207 A B = 64 B C = 12 A B C = 9 A C = 114 + 152 + 25 – 64 – 12 + 9 – 207 = 17 7. Quantas pessoas precisam estar presentes em uma sala para garantir que duas delas tenham o último nome começando pela mesma letra. Solução: O alfabeto (incluindo K, Y e W) tem 26 letras (caixas). Se a sala tiver 27 pessoas, então existem 27 iniciais para se colocar em 26 caixas, de modo que pelo menos uma caixa vai conter mais de uma inicial. 8. Quantas vezes é preciso jogar um dado de modo a garantir que um mesmo valor apareça duas vezes. Resp: 7 vezes. 9. Todos os convidados em um jantar bebem café ou chá. 13 convidados bebem café, 10 bebem chá e 4 bebem tanto café como chá. Quantas pessoas há nesse grupo. A = 13 B = 10 A B = 4 A B = 13 + 10 – 4 = 19 Resp: 19 pessoas. 10. O controle de qualidade de uma fábrica retirou 40 peças de uma linha de produção com defeitos na pintura, na embalagem e na parte elétrica. Dentre essas peças, 28 tinham defeito na pintura, 17 na embalagem e 13 na parte elétrica, 6 tinham defeito tanto na pintura quanto na embalagem, 7 tinham defeito na embalagem e na parte elétrica e 10 tinham defeito na pintura e na parte elétrica. Quantas peças tinham os três tipos de defeito. Solução: A = {defeito na pintura} B = {defeito na embalagem} C = {defeito na parte elétrica} A = 28 B = 17 C = 13 A B C = 40 A B = 6 B C = 7 A C = 10 A B C = x x = 28 + 17 + 13 – 6 – 7 – 10 + x = 40 x = 5