Logo Passei Direto
Buscar

Outros

ESTÁCIO EAD
A quantidade de anagramas com cinco letras distintas, formadas a partir da palavra AUDITOR é:
A quantidade de anagramas com cinco letras distintas, formadas a partir da palavra AUDITOR é:
(A) 120.
(B) 240.
(C) 360.
(D) 2520.
(E) 5040.
User badge image

Enviado por extraindoquestoes_dev_tst+673685 há 4 meses

Respostas

User badge image

Ed Inteligência Artificial do Passei Direto Verified user icon

há 4 meses

Para calcular a quantidade de anagramas de cinco letras distintas formadas a partir da palavra "AUDITOR", precisamos primeiro identificar quantas letras distintas temos na palavra. A palavra "AUDITOR" possui 7 letras, sendo que as letras distintas são: A, U, D, I, T, O, R. Portanto, temos 7 letras distintas. Para formar anagramas com 5 letras, utilizamos a fórmula de combinação seguida da permutação. Primeiro, escolhemos 5 letras dentre as 7 disponíveis e depois permutamos essas 5 letras. 1. Escolha das letras: O número de maneiras de escolher 5 letras de 7 é dado por \( C(7, 5) \), que é igual a \( \frac{7!}{5!(7-5)!} = \frac{7!}{5!2!} = \frac{7 \times 6}{2 \times 1} = 21 \). 2. Permutação das letras escolhidas: Para cada escolha de 5 letras, podemos permutá-las de \( 5! \) maneiras, que é igual a \( 120 \). Portanto, o total de anagramas é: \[ 21 \times 120 = 2520. \] Assim, a quantidade de anagramas com cinco letras distintas formadas a partir da palavra AUDITOR é: (D) 2520.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina