Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
Página 1 de 2 1) Resolva os sistemas que seguem: i) 23wv 1v4zy 35w2v6z3y2x ii) 24z3y5x 72zy3x 13z2yx iii) 43z4y5x 12z2y3x 102zy2x iv) 6 2 4 0 9 3 6 0 x y z x y z Resposta: i) 25w3zx 13w4zy 3w2v ii) O sistema é inconsistente iii) 3z 2,y 1,x iv) 2 ; , 3 y zx y z � 3) Resolva o sistema em função de x e y: 1 2 1 2 3 5 2 a a x a a y Resposta: 1 2 2 5 3 a x y a y x 2) Em certa seção do centro, de determinada cidade, dois conjuntos de ruas de mão única se cruzam (figura que segue). A média do número de veículos por hora que entram e saem dessa seção durante o horário de rush é dada no diagrama. Determine a quantidade de veículos entre cada um dos quatro cruzamentos. UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO Álgebra Linear Lista 02 Prof.ª Rose P. Maria Página 2 de 2 Dica O número de veículos que entra em cada cruzamento tem que ser igual ao número de veículos que sai dele. 3) Determine os valores de k tais que o sistema tenha: a) solução única b) nenhuma solução c) mais de uma solução i – 1z3y2x k2z4y3x 2kzyx ii – 1kz2yx 2zky2x 33zx Resposta: i – a) 3k b) sempre tem uma solução c) 3k ii – a) 5k 2,k b) 5k c) 2k 4) Estabeleça a condição que deve ser satisfeita pelos termos independentes x, y, e z para que os sistemas i) 1 2 1 2 1 2 2 3 4 2 a a x a a y a a z ii) 2 2 a b x a b y a b z Sejam compatíveis. Resposta: i) x = y +2z ii) x = 5z – 3y