Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
UFMG-ICEX-Departamento de Matema´tica MTM123 - Ca´lculo de Va´rias Varia´veis- Prof: Samuel Lista 2- Algumas Respostas 1. Determine e fac¸a o esboc¸o do domı´nio da func¸a˜o: (a) f(x, y) = √ x+ y. (b) g(x, y) = ln(9− x2 − y2). (c) h(x, y) = √ 1− x2 − √ 1− y2. (d) f(x, y) = xy √ x2 + y. (e) f(x, y) = x−3y x+3y . Respostas: (a) Dom(f) = {(x, y)|y 6 −x}. (b) Dom(g) = {(x, y)|x2 9 + y2 < 1}. (c) Dom(h) = {(x, y)| − 1 6 x 6 1, −1 6 y 6 1}. (d) Dom(f) = {(x, y)|y ≥ −x2}. (e) Dom(f) = {(x, y)|y 6= −x 3 }. 2. Determine as derivadas parciais de primeira e segunda ordem da func¸a˜o: (a) f(x, y) = (y − 2x)3. (b) f(x, y) = x− ln(y). (c) f(x, y) = yex. (d) f(x, y) = y x2+y2 . (e) f(x, y) = 3x− 2y4. (f) f(x, y) = x5 + 4x2y2 + 3xy7. (g) z = xe2y. (h) z = (x− y)17. (i) f(x, y) = x−y x . (j) z = sen(xy) · cos(y). Respostas: (a) fx = −6(y − 2x)2, fxx = 24(y − 2x), fy = 3(y − 2x)2, fyy = 6(y − 2x), fxy = fyx = −12(y − 2x). (b) fx = 1, fxx = 0, fy = − 1y , fyy = 1y2 , fxy = fyx = 0. (c) fx = ye x, fxx = ye x, fy = e x, fyy = 0, fxy = fyx = e x. (d) fx = − 2xy(x2+y2)2 , fxx = −2y(y 2−3x2) (x2+y2)3 = −fyy, fy = x 2−x2) (x2+y2)2 , fxy = fyx = −2x(y 2−3x2) (x2+y2)3 . (e) fx = 3, fxx = 0, fy = −8y3, fyy = −24y2, fxy = fyx = 0. (f) fx = 5x 4 + 8xy2 + 3y7, fxx = 20x 3 + 8y, fy = 8x 2y + 21xy6, fyy = 8x 2 + 126xy5, fxy = fyx = 16xy + 21y 6. (g) ∂z ∂x = e2y, ∂ 2z ∂x2 = 0, ∂z ∂y = 2xe2y , ∂ 2z ∂y2 = 4xe2y, ∂ 2z ∂x∂y = 2e2y. (h) ∂z ∂x = 17(x − y)16, ∂2z ∂x2 = 272(x − y)15, ∂z ∂y = −17(x − y)16, ∂2z ∂y2 = 272(x − y)15, ∂2z ∂x∂y = −272(x− y)15. (i) fx = y x2 , fxx = −−2yx3 , fy = − 1x , fyy = 0, fxy = fyx = − 1x2 . (j) ∂z ∂x = ycos(xy)cos(y)), ∂2z ∂x2 = −y2sen(xy)cos(y), ∂z ∂y = xcos(xy)cos(y)− sin(xy)sen(y), ∂2z ∂y2 = (−x2 − 1)sen(xy)cos(y)− 2xcos(xy)sen(y), ∂2z ∂x∂y = cos(y)(cos(xy)− xysen(xy))− ycos(xy)sen(y). 3. Determine: (a) fx(3, 4), onde f(x, y) = ln(x+ √ x2 + y2). (b) fy(1,−1), onde f(x, y) = tg(xy). (c) fx(−1, 1), onde f(x, y) = x5 + 4x2y2 + 3xy7. (d) zx(1, 1), onde z = xe 2y . (e) zxy(1, 1), onde z = xe 2y. Respostas: (a) 1 5 . (b) sec2(−1). (c) 13. (d) e2. (e) 2e2 4. Determine a equac¸a˜o do plano tangente a` superf´ıcie no ponto especificado: (a) z = 4x2 + y2 − 2y no ponto (1, 1, 3). (b) z = 4x2 + y2 − 2y no ponto (1,−1, 7). (c) z = yln(2x2) no ponto (√ 2 2 , 1, 0 ) . (d) z = ex 2+y2 no ponto (√ 2 2 , √ 2 2 , e ) Respostas: (a) z = 8x− 5. (b) z = 8x− 4y − 5. (c) z = 2x √ 2− 2. (d) z = e(x+ y) √ 2− e. 5. Encontre a linearizac¸a˜o da func¸a˜o no dado ponto: (a) f(x, y) = y ln x, P = (2, 1). (b) f(x, y) = x y , P = (6, 3). (c) f(x, y) = y √ x+ y, P = (3, 1). (d) f(x, y) = ye−xycos(y), P = (pi, 0). (e) f(x, y) = sen(2xpi + 3ypi), P = (−3, 2). Respostas: (a) L(x, y) = x 2 +ln(2)y−1 (b) L(x, y) = x 3 − 2y 3 + 1 2 . (c) L(x, y) = x 4 + 9y 4 − 10 4 . (d) L(x, y) = y. (e) L(x, y) = 2pix+ 3piy. 6. Determine dz dt , onde: (a) z = x2y + xy2, x = 2 + t4, y = 1− t3. (b) z = u2v + uv2, u = 2 + x4, v = 1− x3, x = t + t2 + t3. (c) z = sen(x2)cos(y2), x = pit, y = √ t. 7. Determine dz dt e dz ds , onde: (a) z = x2y + xy2, x = 2 + t2s2, y = s− t. (b) z = u2v + uv2, u = 2 + x4, v = 1− x3, x = t + s2. (c) z = sen(θ)cos(φ), θ = pits, φ = √ t + s. 8. Determine a derivada direcional da func¸a˜o no ponto P dado na direc¸a˜o do vetor −→v . (a) f(x, y, ) = xe2y , P = (3, 2), −→u = 〈 2 3 ,− √ 5 3 〉 . (b) f(x, y) = √ x+ y, P = (1, 3), −→u = 〈2, 3〉. (c) f(x, y) = yln(x), P = (1,−3), −→u = 〈−4 5 , 3 5 〉 . (d) f(x, y) = √ x+ y, P = (1, 3), −→u = 〈2, 3〉. (e) f(x, y) = 1 + 2x √ y, P = (3, 4), −→v = 〈4,−3〉. (f) f(x, y) = ln(x2 + y2), P = (2, 1), −→v = 〈−1, 2〉. 9. Determine a taxa de variac¸a˜o ma´xima de f no ponto P dado e a direc¸a˜o em que isso ocorre. (a) f(x, y, ) = xe2y , P = (3, 2) (b) f(x, y) = xe−y + ye−x, P = (0, 0). (c) f(x, y) = ln(x2 + y2), P = (1, 1). (d) f(x, y) = sen(xy), P = (1, 0). 10. Determine os valores ma´ximos e mı´nimos locais e pontos de sela da func¸a˜o: (a) f(x, y) = 9− 2x+ 4y − x2 − 4y2; (b) f(x, y) = xy − 2x− y; (c) f(x, y) = (x2 + y2)ey 2−x2; (d) f(x, y) = x3y − 12x2 − 8y; (e) f(x, y) = e4y−x 2−y2; (a) Ma´ximo local : (−1, 1 2 ) . (b) Sela: (1, 2). (c) Sela: (2, 4). (d) Mı´n: (0, 0); Sela: (1, 0) e (−1, 0). (e) Ma´x: (0, 2)