Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
Lista de Exerc´ıcios 12 1. Use uma substituic¸a˜o trigonome´trica apropriada e calcule as seguintes inte- grais indefinidas. (a) ∫ √ 4− x2dx (b) ∫ x 2 (4− x2)3/2 dx (c) ∫ dx x2 √ 4− x2 (d) ∫ √ 9− x2 x2 dx (e) ∫ dx ( √ x2 + 3)3 (f) ∫ dx x2 √ x2 + 9 (g) ∫ dx x √ x2 + 5 (h) ∫ 1 x2 + a2 dx (i) ∫ dx x3 √ x2 − 25 (j) ∫ dx x2 − 16 (k) ∫ dx 9x2 − 1 (l) ∫ dx x3 √ x2 − 16 2. Complete os quadrados, e usando uma substuic¸a˜o trigonome´trica, calcule as seguintes integrais: (a) ∫ dx (5− 4x− x2)3/2 (b) ∫ xdx √ 4x2 + 8x+ 5 (c) ∫ x x2 − 4x+ 8 dx (d) ∫ dx 5− 4x+ 2x2 3. Use frac¸o˜es parciais e calcule as seguintes integrais indefinidas. (a) ∫ 3x− 5 x2 − x− 2 dx (b) ∫ 5x3 − 6x2 − 68x− 16 x3 − 2x2 − 8x dx (c) ∫ 3x2 + 4x+ 2 x(x+ 1)2 dx (d) ∫ 3x− 2 x3 − x2 dx (e) ∫ 8x2 + 3x+ 20 (x+ 1)(x2 + 4) dx (f) ∫ 3x3 + 2x2 − 2 x2(x2 + 2) dx (g) ∫ x 3 + x+ 2 x(x2 + 1)2 dx (h) ∫ x 5 − 2x4 + 2x3 + x− 2 x2(x2 + 1)2 dx 4. Use a identidade sen2x+ cos2x = 1, e substituic¸o˜es apropriadas para calcular cada integral. (a) ∫ cos 3 x dx (b) ∫ sen 5(2x)dx (c) ∫ sen 2 cos 5 x dx (d) ∫ sen 3 x √ cos x dx 1 5. Use as identidades trigonome´tricas sen2x = 1 2 (1− cos 2x), cos2x = 1 2 (1 + cos 2x), e substituic¸o˜es apropriadas para calcular cada integral. (a) ∫ cos 2 x dx (b) ∫ sen 4 x dx (c) ∫ sen 4 x cos 4 x dx (d) ∫ sen 4 x cos 2 x dx 6. Use as identidades trigonome´tricas sen x cos y = 1 2 [sen(x+ y) + sen(x− y)] , sen x sen y = 1 2 [cos(x− y)− cos(x+ y)] , cos x cos y = 1 2 [cos(x− y) + cos(x+ y)] , e substituic¸o˜es apropriadas para calcular cada integral. (a) ∫ (sen 3x)(cos 4x)dx (b) ∫ (sen 7x)(cos 2x)dx (c) ∫ (sen 5x)(cos 2x)dx (d) ∫ (cos4x)(cos3x)dx Respostas 1. (a) 2arcsen x+ x 2 √ 4− x2 + C (b) x√ 4−x2 − arcsen (x 2 ) + C (c) − √ 4−x2 x + C (d) − 3 x − arcsen (x 3 ) + C (e) x 3 √ 3+x2 + C (f) − √ x2+9 9x + C (g) 1√ 5 ln ∣∣∣∣ √ x2+5−√5 x ∣∣∣∣+ C (h) 1 a arctg ( x a ) + C (i) 1 250 ( arcsen ( x 5 )− 5 √ x2−25 x2 ) + C (j) ln ∣∣∣∣x4 + √ x2+16 4 ∣∣∣∣+ C (k) 1 6 ln ∣∣∣ 3x−13x+1 ∣∣∣+ C (l) 1 128 ( arcsen ( x 4 )− 4 √ x2−16 x2 ) + C 2. (a) x+2 9 √ 9−(x+2)2 + C (b) 1 4 √ 4x2 + 8x+ 5− 1 2 ln |√4x2 + 8x+ 5+2x+2|+ C (c) 1 2 ln ( (x− 2)2 + 4)+ arctg (x−2 2 ) + C (d) 1√ 2 arcsen (√ 2/7(x+ 1) ) + C 3. (a) ln(|x− 2|1/3|x+ 1|8/3) + C (b) 5x+ ln ( x2|x+2|14/3 |x−4|8/3 ) + C (c) ln |x2(x+ 1)|+ 1 x+1 + C (d) − ln |x| − 2 x + ln |x− 1|+ C (e) 3 2 ln(x2 + 4) + 5 ln |x+ 1|+ C (f) ln |x|+ 1 x + ln(x2 + 2) + √ 2 2 arctg √ 2 2 x+ C (g) 2 ln |x| − ln(x2 + 1) + arctg x+ 1 x2+1 + C (h) 1 2 arctg x+ x 2(x2+1) + C 4. (a) sen x− sen3x 3 + C (b) − 1 2 ( cos 2x− 2 3 cos3(2x) + 1 5 cos5(2x) ) + C (c) sen 3x 3 − 2sen5x 5 + sen 7x 7 + C (d) 5(cos x)5/2 2 − 2√cos x+ C 5. (a) x 2 + sen(2x) 4 + C (b) 3x 8 − sen 2x 4 + sen 4x 32 + C (c) 1 32 ( 3x 4 − sen4x 4 + sen 8x 32 ) + C (d) 1 8 ( x 2 − sen 4x 8 − sen32x 6 ) + C 6. (a) − cos7x 14 + cos x 2 + C (b) − 1 10 cos 9x− 1 10 cos 5x+ C (c) − 1 14 cos 7x− 1 6 cos 3x+ C (d) 1 2 sen x+ 1 14 sen 7x+ C 2