Logo Passei Direto
Buscar
Material

Prévia do material em texto

Calculo 2 1 Derivadas Direcionais DERIVADAS DIRECIONAIS, PLANO TANGENTE E VETOR GRADIENTE DERIVADAS D IRECIONAIS Ambas as expressões estão representando objetos geométricos (linhas ou planos) em um Definição: Medem a taxa de de uma espaço, usando vetores para indicar direção e função em uma direção específica, não apenas posição: nas direções coordenadas. Cálculo: Se um vetor unitário na direção b: Descreve uma linha a partir de uma desejada e f(x,y) é a função, a derivada posição inicial b e movendo-se na direção a. direcional Duf é dada por: +t Duf) Pode ser visto Expressão da derivada direcional: como uma linha ou plano tangente, originando- se em e se movendo na direção Duf Vf com uma variação na função f capturada por Gradiente e direção específica: Duf й PLANO TANGENTE Definição: É plano que melhor aproxima a Vf (a,b) superfície em específico. Cálculo: Para uma função f(x,y) e um ponto onde vetor gradiente da função, e и plano tangente por: (a, b)é vetor unitário na direção desejada. Suponha que f seja uma função de duas produto escalar Vf fornece a taxa de variáveis com derivadas parciais de primeira variação de f na do vetor и. ordem contínuas A equação do plano tangente à superfície y) no ponto P (x0, FORMA VETORIAL PARA PLANO TANGENTE dada por Esta é a forma vetorial de uma linha em um espaço tridimensional ou bidimensional. Conforme t varia, ponto (ou a posição ao longo da linha) se move na direção de a, onde fx e fy são as derivadas parciais da função partindo da posição inicial dada por b. em relação a X e y, respectivamente; No contexto de um espaço tridimensional, respectivamente, calculadas no ponto yo). podemos pensar em a e b vetores VETOR GRADIENTE tridimensionais (ou bidimensionais, se estivermos Definição: Representa a direção e a taxa máxima de variação de uma função t.a+b Cálculo: Para uma função O vetor a : direção gradiente é dado por: b: cordenadas Essa equação descreve uma linha ou um plano tangente em um ponto movendo- se na direção dada por e seguindo a variação Expressão Vetorial: indicada por Duf. Duf) onde X: