Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
MECAˆNICA FUNDAMENTAL – 2013/2 – DF-ICEx FIS031 – Turma: B2 Respostas de problemas do Cap. 1 da Apostila Obs: Soluc¸a˜o do problema 1.21 corrigida 1.1 (a)~ı + 2~ − ~k , √6 (b)~ı + ~k , √ 2 (c) 1 (d) −~ı +~ + ~k , √3 1.3 arccos √ 2/3 = 35◦15′ 1.4 (a) −~ıω senωt+~ω coswt, ω (b) 2~ + 6t~k , √ 4 + 36t2 (c) cosωt−ωt senωt+ωt2 cosωt+ 2t senωt, (3t2 senωt+ t3ω cosωt)~ı − (3t2 cosωt− t3ω senωt)~ + ((2t− tω) cosωt− (1 + t2ω) senωt)~k 1.5 (−1±√17)/4 1.10 (1/2)~ı ′ +~ ′ + ( √ 3/2)~k ′ 1.12 cosφ cos θ cosφ sin θ − sinφ− sin θ cos θ 0 sinφ cos θ sinφ sin θ cosφ 1.14 ~k , ~ − ~k ,~ı − ~k 1.15 ωb √ 1 + 3cos2ωt 1.16 arccos √ −3/5 = 126◦.87 1.19 √ b2ω2 + 4c2t2, √ b2ω4 + 4c2 1.21 √ b2ω2(b2ω4+4c2+4c2t2ω2) b2ω2+4c2t2 , 4c 2t√ b2ω2+4c2t2 1.25 (~av − ~vv˙)/|~a× ~v| 1.26 ~a = −(bω21+bω22 sen2 ω1t)~er+(2bω1ω2 cosω1t)~eφ−(bω22 senω1t cosω1t) ~eθ, ~a(θ = 0) = −bω21~er + 2bω1ω2~eφ