Logo Passei Direto
Buscar

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Universidade dos Açores 
Departamento de Matemática 
 
 
 
 
 
 
Discente: Filipe Gago da Câmara 
Docente: Dr. Osvaldo Silva 
 
Ponta Delgada, 29 de Junho de 2001 
 
Estatística 
Não Paramétrica 
Testes de Hipóteses e Medidas de Associação 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Índice 
ÍND CE I
 
Teste de Hipóteses ......................................................................................................................1 
Introdução...................................................................................................................................3 
Capitulo 1: Caso de uma amostra ...............................................................................................6 
1.1 Teste da Binomial.............................................................................................................6 
21.2 Teste do Qui-Quadrado ( χ ) para uma amostra............................................................10 
1.3 Teste de Kolmogorov-Smirnov ......................................................................................12 
1.4. Teste de Iterações de Uma Amostra ..............................................................................17 
Capítulo 2: Caso de duas amostras relacionadas ......................................................................23 
2.1 Teste dos Sinais ..............................................................................................................23 
2.2 Teste de McNemar .........................................................................................................25 
2.3 Teste de Wilcoxon ..........................................................................................................28 
Capitulo 3: Caso de duas amostras independentes ...................................................................32 
3.1 Teste de Iterações de Wald-Wolfowitz ..........................................................................32 
3.2 Teste U de Mann-Whitney .............................................................................................37 
3.3 Teste de Moses para reacções extremas .........................................................................41 
3.4 Teste da Qui-Quadrado ( 2χ ) para duas amostras independentes ..................................44 
Capítulo 4: Caso de k amostras relacionadas ...........................................................................50 
4.1 Teste Q de Cochran .......................................................................................................50 
4.2 Teste de Friedman ..........................................................................................................54 
Capítulo 5: Caso de k amostras independentes ........................................................................57 
5.1 Teste de Kruskal-Wallis .................................................................................................57 
Capitulo 6: Medidas de Correlação ..........................................................................................60 
6.1 Coeficiente de Correlação por postos de Kendall: τ .....................................................60 
6.2 Coeficiente de Correlação por postos de Spearman: Sr .................................................64 
6.3 Coeficiente de Concordância de Kendall: W ................................................................66 
Conclusão .................................................................................................................................70 
Bibliografia...............................................................................................................................75 
Anexos ......................................................................................................................................75 
Anexo 0 ................................................................................................................................76 
Anexo I: Caso de uma amostra.............................................................................................77 
Anexo II: Caso duas amostras relacionadas .........................................................................81 
Anexo III: Caso de duas amostras independentes ................................................................85 
Anexos IV: Caso de k amostras relacionadas.......................................................................91 
Anexo V: Caso de k amostras independentes.......................................................................94 
Anexo VI: Medidas de Correlação. ......................................................................................95 
Tabelas......................................................................................................................................75 
Tabela A ...............................................................................................................................76 
Tabela B................................................................................................................................77 
Tabela C................................................................................................................................78 
Tabela D ...............................................................................................................................79 
Tabela E................................................................................................................................81 
Tabela F ................................................................................................................................82 
Tabela G ...............................................................................................................................84 
Tabela J.................................................................................................................................85 
Tabela K ...............................................................................................................................88 
Tabela N ...............................................................................................................................89 
Tabela O ...............................................................................................................................91 
Tabela P ................................................................................................................................93 
Tabela Q ...............................................................................................................................94 
Tabela R................................................................................................................................95 
 
Teste de Hipóteses 
TESTE DE HIPÓTESES 
 
Em muitas situações, queremos tomar uma decisão de forma a minimizar os riscos 
envolventes. 
No campo da estatística, formulamos hipóteses acerca de uma dada amostra, estas 
hipóteses são submetidas a determinados testes. A hipótese a ser testada designamos por 
Hipótese Nula ( ), a Hipótese Alternativa ( 1H ) é a conclusão a que chegamos quando a 
hipótese nula é rejeitada. 
0H
Quando formulamos uma decisão sobre podem ocorrer dois erros distintos. O 
primeiro, designado por erro tipo I, consiste em rejeitar a hipótese nula quando ela é 
verdadeira. O segundo, designado por erro tipo II, consiste em aceitar 0 quando ela é falsa
0H
H . 
A estes erros estão associados uma probabilidade, isto é, 
 
β=)|.(
α=.)|.(
00
00
falsaHHacP
verdHHrejP
 
 
Quando queremos reduzir a probabilidade de ambos os tipos de erro, devemos aumentar 
a dimensão da amostra. 
À probabilidade α damos o nome de nível de significância. 
Como o valor
α entra no processo de determinação de aceitação ou rejeição de H , a 
condição de objectividade da prova exige que o nível de significância seja fixado antes da 
recolha de dados. Os valores mais comuns para α são de 0,05 e 0,01 de acordo com a 
importância prática dos resultados. 
0
Quanto mais pequena é a probabilidade β mais potente é o teste, ou seja, o teste óptimo 
da hipótese 0 vs. 1 é aquele que para uma probabilidade de ocorrer o erro tipo I, torne 
mínima a probabilidade de ocorrer o erro tipo II. 
H H
Após ter escolhido as hipóteses e o nível de significância devemos determinar qual a 
distribuição amostral. Esta é uma distribuição teórica que, se puséssemos considerar todos 
os eventos possível, dava-nos as probabilidades, sob , associadas aos valores numéricos 
possíveis da estatística. 
0H
1 
Teste de Hipóteses 
Neste momento temos que escolher o teste estatístico apropriado, tendo em conta os 
seus pressupostos. 
Definida as hipóteses, o nível de significância, o teste estatístico, falta-nos saber como 
rejeitar/aceitar 0H . 
 
 o . 
e ita a 
hipótese nula. 
Região de rejeição é uma região da distribuição amostral, na qual consiste num 
conjunto de valores tão extremos que, quando é verdadeira, a probabilidade α do valor 
observado da amostra estar entre eles é muito pequena. A probabilidade associada a qualquer 
valor na região de rejeição é afectada pela natureza da hipótese alternativa. Se indica o 
sentido da diferença, utiliza-se um teste unilateral, caso contrário, utiliza-se um teste 
bilateral. 
0H
1H
A seguinte figura ilustra-nos como as duas regiões diferem entre si, mas não altera o 
tamanho. 
Figura 1: Dois tipos de testes 
 
 
 
 
 
 
 
P=0.05P=0.025P=0.025
Teste bilateral Teste unilateral 
 A área de cor azul é a região de rejeição para um =α 05.0
Para uma decisão final, basta ver se o valor resultante de um teste estatístico está na 
região de rejeição ou não. 
Uma abordagem alternativa para o teste de hipóteses é sugerida pelo cálculo da 
probabilidade associada. ( ) a uma dada observação. O valor é a probabilidade de ser 
verdadeira. Se toma um valor menor ou igual a , então rejeitamos a hipótese nula, caso 
contrário, se p toma um valor superi r a α , então aceitamos H O valor p (ou 
probabiliade de significância) dá-nos também uma ideia do poder do teste estatístico. 
Quanto maior for a probabilidade p mais forte é o teste e com mais facilidade s
p p 0H
p α
0
ace
2 
Introdução 
 
 
INTRODUÇÃO 
 
Nos primórdios da estatística, desde que o Homem se organiza em sociedade, ela 
aparece como processo organizado de contagem, seja ela de pessoas, cereais, frutas, etc.. 
Estes processos de contagem eram, posteriormente, apresentados à sociedade através de 
tabelas e gráficos. 
A palavra estatística aparece sempre ligada a coisas do Estado (status), mas só no séc. 
XVII a estatística é tida como uma disciplina autónoma destinada a descrever factos ligados 
ao estado. A estatística era associada ao processo político, como base para o planeamento do 
Estado. 
Esse processo de contagem do todo, denominado Censo, não é um procedimento dos 
tempos passados. Na verdade ela constitui uma importante área da Estatística. 
Relativamente à totalidade dos dados, há uma outra linha de trabalho que é conhecida 
como Estatística Descritiva, que procura expressar as informações mais relevantes contidas 
num conjunto de dados através do cálculo de valores. Cada um destes valores resume de uma 
forma específica o conjunto de dados. 
Mais recentemente, surgiu outro campo da estatística que designa-se por Estatística 
Indutiva ou Inferência Estatística 
Esta estatística preocupa-se em estimar o verdadeiro valor desconhecido do(s) 
parâmetro(s) de uma população e testar hipóteses com respeito ao valor dos parâmetros 
estimados, ou à natureza da distribuição da população. 
Aqui é que surge uma separação, ou sabemos à partida qual a distribuição da população 
(Estatística Paramétrica), ou não sabemos qual a sua distribuição (Estatística Não 
Paramétrica). 
Focaremos o nosso estudo sobre a Estatística Não Paramétrica. Os primeiros métodos 
da estatística não paramétrica, embora com pouco uso até aos anos 40, foram referidos por 
John Arbuthnot em 1710. Estes começaram a ter maior impacto só a partir de 1942 com 
Wolfowitz. A partir daí o interesse aumentou de uma forma rápida. 
Hoje a estatística não paramétrica é considerada como um dos campos mais importantes 
da estatística. As técnicas que advêm desta categoria são usadas com grande frequência nas 
ciências físicas, biológicas e sociais ou até mesmo na comunicação. Outros autores, também 
dão importância a outros campos, tais como, na análise de dados da qualidade da água 
3 
Introdução 
 
 
(Helsel), em aplicações na medicina (Brown and Hayden) ou mesmo na psicologia 
(Buckalew). 
Enumeremos, algumas vantagens para os métodos conhecidos: 
 
1. Como os métodos da estatística não paramétrica depende do mínimo de suposições, 
a possibilidade de o método não ser adequado é menor. 
2. Para alguns métodos a avaliação pode ser rápida e fácil, especialmente se o cálculo 
for manual. Deste modo, usando-os pode poupar tempo. É considerado importante, 
se não tivermos tempo ou se não temos meios técnicos para o cálculo rápido. 
3. Os métodos estatísticos são fáceis de perceber, mesmo tendo o mínimo de 
preparação matemática e estatística. 
4. Muito dos testes não paramétrica trabalham só com a ordem dos dados. 
5. Poderão trabalhar com amostras de pequenas dimensões. 
 
É claro que os métodos de estatística não paramétrica também trazem desvantagens. As 
mais importantes são as seguintes: 
 
1. Os testes não paramétricos, por vezes, são usados quando os testes paramétricos são 
mais apropriados, porque estes testes são mais simples e rápidos, deste modo, pode 
haver perda de informação. 
2. Ainda que os procedimentos não paramétricos têm a reputação de requerer só 
cálculos simples, a aritmética em muitas instâncias pode ser tendenciosa e 
trabalhosa, especialmente quando as amostras são grandes. 
3. Os métodos paramétricos são mais potentes para uma mesma dimensão e um 
mesmo α do que os métodos da estatística não paramétrica. 
 
Situação onde podemos usar os métodos da estatística não paramétrica 
 
Os métodos não paramétricos são apropriados quando: 
 
1. As hipóteses a testar não envolve parâmetros da população. 
2. Se conhece a ordem dos dados. 
3. Os pressupostos necessários para o uso válidos dos métodos paramétricos não são 
conhecidos. Em muitos casos o planeamento de um projecto de pesquisa pode 
4 
Introdução 
 
 
sugerir um certo processo paramétrico, mas quando iremos aplicar este processo 
poderá violar de uma forma determinante os pressuposto. Neste caso, um método 
não paramétrico seria a única alternativa. 
 
Quando queremos implementar um método devemos ter em conta o nível de medida das 
variáveis a analisar, estas estão divididas em diferentes grupos: 
1. Escala Nominal: neste nível situam-se todas as observações que são categorias e 
não têm uma ordem natural, por exemplo, o sexo dos alunos de uma dada turma. 
Para que tenha uma ordem, pode ser atribuído um valor numérico, no entanto, os 
números não tem um verdadeiro e único significado (Ex.: masculino=1, feminino=2 
ou feminino=1, masculino=2); 
2. Escala Ordinal: as observações são categorias que têm uma ordem natural. Estas 
observações podem não ser numéricas. Por exemplo, as classificações dos testes 
podem ser mau, não satisfaz, satisfaz, bom ou muito bom. 
3. Escala Intervalar: tem todas as características da ordinal com a vantagem
de 
conhecer as distâncias entre dois números quaisquer da escala. Estes valores estão 
limitados entre dois valores. (Ex. As notas das frequências de uma dada turma, os 
valores estão entre zero e vinte). 
4. Escala de Razões: além das características de uma escala intervalar, tem um 
verdadeiro ponto zero como origem. Não existe limites. Nesta escala, a razão de 
dois pontos quaisquer é independente da unidade de mensuração, por exemplo, se 
determinarmos os pesos de dois objectos diferentes não somente em libras, mas 
também em gramas, observamos que a razão dos dois pesos em libras é idêntica à 
razão dos dois pesos em gramas. 
 
Os vários métodos para testar as hipóteses serão apresentados de forma a focar as 
diferenças entre as várias fontes de informação disponíveis, tais como, as tabelas e os dois 
Software especializados: o Mathematica® e o SPSS®. A introdução dos dados, no caso do 
SPSS®, e a programação das funções, no caso do Mathematica®, estarão em anexo, bem com 
as tabelas aqui utilizadas. 
5 
Capítulo 1: Caso de uma amostra 
CAPITULO 1: CASO DE UMA AMOSTRA 
 
Os testes estatísticos inerentes ao caso de uma amostra servem para comprovar uma 
hipótese que exige a extracção de uma amostra. É usualmente usado para teste de aderência, 
isto é, se determinada amostra provém de uma determinada população com uma distribuição 
específica. 
 As provas de uma amostra verificam se há diferenças significativas na locação 
(tendência central) entre a amostra e a população, se há diferenças significativas entre 
frequências observadas e as frequências que poderíamos esperar com base em determinado 
princípio, se há diferenças significativas entre as proporções observadas e as proporções 
esperadas e se é razoável admitir que a amostra seja uma amostra aleatória de alguma 
população conhecida. 
 
1.1 Teste da Binomial 
 
Antes de falar no teste da Binomial, falemos um pouco da distribuição Binomial. Esta 
distribuição é comum ser usada para a contagem de eventos de um modelo observado. É 
baseado no pressuposto de que a contagem podem ser representada como um resultado de 
uma sequência de resultados independentes de Bernoulli (por exemplo: o lançamento de uma 
moeda). Se a probabilidade de observar um resultado R é P para cada n ensaios, então a 
probabilidade que R será observado num ensaio x exacto é 
 
xNx
x PPx
N
p −−⎟⎟⎠
⎞
⎜⎜⎝
⎛= )1( 
 
A distribuição definida por: [ ] ),,1( NxpxXP x K=== é chamada distribuição 
bi râmnomial com pa etros n e p. O nom que a expansão binomial de e aparece, pelo facto de
np)− é nPPP +++ K10 . 
O Teste da Binomial aplica-se a amostras que provém de uma população, onde o 
número de casos observados podem ser representados por uma variável aleatória que tenha 
distribuição binomial. As amostras consistem em dois classes (ex: cara o
p 1( +
u coroa; sucesso ou 
insucesso), deste modo este teste é aplicado a amostra de escala nominal. 
(1.1.1) 
6 
Capítulo 1: Caso de uma amostra 
Cada uma das classes tem a sua proporção de casos esperados, tomaremos, assim, P 
para a proporção de uma das classes, e para a outra classe. PQ -1=
P é fixo para uma determinada população, mas, devido aos efeitos aleatórios, não 
podemos esperar que determinada amostra tenha exactamente a mesma proporção. 
A hipótese a ser testada é se o valor da população é P . 
A probabilidade de obter x objectos numa das categorias e noutra categoria é 
dada pela fórmula 1.1.1.. 
xN −
No entanto, não queremos saber qual a probabilidade exacta dos valores observadas, 
mas sim qual a probabilidade de obter os valores observados ou valores mais extremos. Então 
para o método aplicamos a seguinte distribuição amostral: 
∑
=
iNiN
i QPC
- 
ão da amostra); 
3. ostra, elas são classificadas em pequenas amostras 
3.1. 
x
i 0
Método: 
1. Determinar o número de casos observados N (dimens
2. Determinar as frequências em cada uma das classes; 
Conforme a dimensão da am
( )25≤N ) e grandes amostras ( 25>N ): 
Para pequenas amostra e 21== QP , a tabela D dá as probabilidades unilaterais, 
sob 0H , de vários tão pequenos quanto um x observado. Emprega-se uma prova 
unilateral quando se conhece em antemão qual das classes tem menor frequência, 
3.2. Se robabilidade, sob , de ocorrência do valor 
caso contrário basta, para uma prova bilateral, duplicar os valores da tabela D. 
 QP = , determina-se a p 0H
observado x , utilizando a fórmula 1.1.2. 
Para grandes amostras, pode-se demonstrar que quando N cresce a distribuição 
binomial tende para a distribuição Normal. Se s rápida se P estiver próximo 
de 
3.3. 
rá mai
2
1 . Os parâmetros a usar serão a média =NPµ x e o desvio padrão NPQ=σ , 
deste m
x
odo, tem distribuição aproximadamente normal com média 0 e 
variância 1, sendo: 
z
NPQ
x-NP
=
σ
x-µ
z= x (1.
x 
(1.1.2) 
1.3) 
7 
Capítulo 1: Caso de uma amostra 
Devido à natureza da variável x ser discreta e a distribuição normal ser contínua, 
deve-se incorporar um factor de correcção. Assim sendo z fica 
 
NPQ
-NPx
z
)5.0±(
= 
 
onde x + 0.5 
(1.1.4) 
é utilizado quando x < NP e x – 0.5 quando x > NP. 
Então para grandes amostras e P próximo de 21 , testamos a hipóteses pla icando a 
fórmula 1.1.4. A tabela A dá a probabilidade, sob , associada à ocorrência de 
 grandes quanto um valor de z observado, dado por aquela fórmula. A 
tabela dá os valores unilaterais de p, sendo necessário para prova bilateral, 
plo 1.1.1: 
mos que num
. O pais querem saber se a probabilidade de nascer feminino ou masculino é igual. 
R
idade de ascer menino ( ) ou 
menina (
p babilidade. 
ial porque os dados estão dicotomizados em duas classes 
discretas. O nascim ,
0H
valores tão
duplicá-los. 
Se o valor p associado ao valor observado x, não superar α , então rejeita-se H . 0
 
Exem
 
Suponha a dada família nasceram 12 filhos, 7 do sexo feminino e 5 do sexo 
masculino s 
esolução: 
 
Hipóteses: 
 210 =: ppH Não há diferenças na probabil n 1p
)2p . 
211 : pH ≠ Há diferença na pro
 
Escolhe-se o teste binom
ento é um processo aleatório, assim 21== QP . 
 
Seja e N número de filhos = 12 01,0=α
 
 
8 
Capítulo 1: Caso de uma amostra 
A distribuição amostral é dada pela fórmula: 
387,0
5
00 == i
i
i
i
 
-12- == ∑∑ iNix iNiN QPCQPC 
ara a bilateral basta 
duplicar o valor, sendo assim,
Sabemos que o cálculo anterior deu a probabilidade unilateral, p
 774,0387,02 =×=p . A região de rejeição consiste em todos 
e x tão pequenos que a probabilidade, sob a hipótese nula, associada à sua 
ocorrência não seja superior a 0,01. 
Como a probabilidade p = 0,774 associado a 
os valores d
5≤x é maior que 01,0=α , conclui-se 
que não existe diferenças nas probabilidades de nascer menino ou menina. 
O SPSS®, além do valor p, dá-nos um quadro resumo da amostra: 
 
Output 1.1.1: 
 
 
Este software pode fazer o teste com maior rapidez, muito embora, se a dimensão da 
amos
 
nascimentos e que 
nasceram 725 crianças do sexo masculino, para testar a hipótese, basta: 
 
pmB
tra for muito grande, a introdução dos dados poderá ser demorada. Para colmatar esta 
situação podemos recorrer ao Mathematica®, pois, basta dar o número de casos de um das 
classes como ilustra o seguinte exemplo: 
 
E emplo 1.1.2: x
Suponhamos agora que queremos saber se a probabilidade de nascer masculino ou 
feminino num dado país é igual. Considerando uma amostra de 1500 
n inomial p-value = 0.5725 
One- Sided PValue - > 0.102896822008 
Two- Sided PValue - > 0.205793644017 
9 
Capítulo 1: Caso
de uma amostra 
Como o “p-value” é maior que 01.0=α , então aceitamos a hipótese de que não existe 
diferenças entre o número de nascimentos do sexo masculino e feminino. 
 
1.2 Teste do Qui-Quadrado ( 2χ ) para uma amostra 
 
É adequado aplicar este teste quando temos os dados da amostra dividida em duas ou 
mais categoria. O propósito deste método é ver se existem diferenças significativas entre o 
núme ivíduos, de objectos ou de respostas, em determinada classe, e o respectivo 
núme Isto é, a técnica testa se as frequências 
obser
hipótese 
 método envolve os seguintes passos: 
1. Enquadrar as frequências observadas nas k categorias. A soma 
ser N, número de observações independentes; 
 Por meio de , determinar as frequências esperadas para uma
3. órmula: 
 
ros de ind
2χro esperado baseado na hipótese nula.
vadas estão suficientemente próximas das esperadas para justificar sua ocorrência sob a 
nula. 
 
Método: 
O
2. 0H
 Calcular o valor de 2χ por meio da seguinte f
( )∑ −= k ii EO 22χ 
=i i
calc E1
.
 
 
iO = número de casos observados na categoria i 
 = número de casos esperados na categoria i sob 0H 
= número de categorias na classificação; 
iE
k 
4. Determinar o grau de liberdade ( 1−= kgl ); 
5. Com base na tabela C, determinar a probabilidade associada à
2de um valor tão grande quanto o valor observado de 
considerado. Se o valor de p, assim obtido, for igual a, ou meno
χ
se a hipótese nula. 
das frequências deve 
 das k células; 
 ocorrência, sob 0H , 
para o valor de 
r do que, 
gl
α , rejeita-
(1.2.1)
10 
Capítulo 1: Caso de uma amostra 
Nota: quando k > 2, se mais de 20 por cento dos ’s são inferiores a cinco, combina-
se de maneira razoável, categorias adjacentes. Reduzindo, assim o número de classes e 
aume uns dos ’s. Quando k = 2. Pode-se empregar a prova 
para uma amostra só se cada frequência esperada é no mínimo, igual a 5 (Cochran, 1954). 
 
E
 
Tabela
elho Branco Preto Azul Cinzento
iE
 iE
2χ ntando o números de alg
xemplo 1.2.1: 
Dada a seguinte tabela: 
 
 1.2.1: 
Cor Verm
Número de automóveis 29 25 19 15 17 
 
Querem e há preferência em determinada cor, isto é, há razões para dizer que 
há preferência rminada cor? Com um nível de significância 
os saber s
 em dete 05,0=α . 
esolução: 
ormulamos as hipóteses: 
R
 
F
5
1: CinzentoAzulPretoBrancoVermelho0 ===== PPPPPH 
01 : HH é falsa. 
 
Calculamos o número total de frequências e o valor esperado: 
 
105 ++++====== 1715192529CinzentoAzulPretoBrancoVermelho NNNNNN =
 
21
5
105 ===Ei 
 
k
N
alculamos 2χ : C
( ) ( ) ( ) ( ) ( ) 48,6
21
2117
21
2115
21
2119
21
2125
21
2129 222222 ≈−+−+−+−+−=χ 
11 
Capítulo 1: Caso de uma amostra 
A tabela C indica que 48,62 ≥χ para gl = 4 tem a probabilidade de ocorrência 
entre 1,0=p e 2,0=p . Como p > α então não podemos rejeitar 0H . Concluindo que a 
proporção de casos em cada categoria é igual, para um nível de 0,05. 
 
Através deste exemplo, verifica-se que 
tabela, deste modo, seria mais preciso se util
não podemos ir buscar o valor exacto de p na 
assim, o SPSS® seria a melhor escolha, como
 
Output 1.2.1: 
 
 
 
 
 
 
oderíamos utilizar o Mathematica®, através da função QuiQuadrada1Amostra[], 
iQuadrada1Amostra 29,25,19,17,15 
izarmos outros meios de cálculo mais eficazes, 
 ilustra o seguinte output: 
 
P
dando como parâmetro a amostra: 
 
Qu
PValue: 0.166297 
 
como é observado, o
associad
a am
função de distribuição empírica da amostra define-se como a proporção das observações da 
amostra que são menores ou iguais a 
 Mathematica® calcula com maior precisão o valor da probabilidade 
a. 
 
1.3 Teste de Kolmogorov-Smirnov 
 
O Teste de Kolmogorov-Smirnov de um ostra é baseado na diferença entre a função 
de distribuição cumulativa )(0 xF e a função de distribuição empírica da amostra )(xSn . A 
x para todos os valores reais x . )(xSn dispõe dum 
estimador pontual consistente para a verdadeira distribuição . Mais, através do teorema )(xFX
12 
Capítulo 1: Caso de uma amostra 
de Glivenko-Cantelli1 , podemos afirmar que )(xSn aproxima-se da distribuição teórica. 
Portanto, p ra um n grande, o desvio entre as duas dia stribuições, ,)()( xFxS Xn − fica cada 
vez m is pequenos para todos os valores de x . Assim ficama os com o seguinte resultado: 
 
)()(sup xFxD X
x
n −= (1.3.1) 
 
À esta nD chama os estatística de Kolmogorov-Smirnov de uma amostra. É 
particularmente út
Sn
tística m
i a a Estatística Não Paramétrica, porque a probabilidade de não 
depen este modo, pode ser chamada estatística 
sem distribuição. 
l par nD
de de )(xFX desde que XF seja contínua. D nD
O desvio à direita e à esquerda definida por 
 
 [ ])()(sup xFxSD Xn
x
n −=+ [ ])()(sup xSxFD nXn −=− (1.3.2) 
 
x
são c
uições de são independentes de 
podem s assumir, sem perda de generalidade, que é a distribuição uniforme com 
par sim o s o seguinte teorema: 
 
Teorema 1.3.1: Para 
hamados estatísticas de Kolmogorov-Smirnov unilaterais. Estas medidas também não 
têm distribuição. 
 Para que possamos utilizar a estatística de Kolmogorov para inferência, a distribuição 
da amostra deve ser conhecida. Sabendo que as distrib nD XF , 
o XF
âmetros (0,1). As btemo
)()(sup xFxSD Xn
x
n −= onde é uma função distribuição 
cumulativa contínua qualquer, temos: 
 
)(xFX
 
1 Teore ko-Cantelli: converge uniformemente para com a probabilidade 1; que é ma de Gliven )(xnS )(xFX
10)()(suplim =⎥⎦
⎤⎢⎣
⎡ =−
∞<<∞−∞→
xFxSP Xn
xn
 
13 
Capítulo 1: Caso de uma amostra 
⎪⎩1
⎪⎪ −≥
n
nvse
vse
2
12
0
10! uun K
i extraí d
 preciso ter em enos 
ordinal. 
Seja uma distribuição de frequências acumuladas, teórica, sob 
Seja a distribuição de frequências acumuladas de uma amostra aleatória de N 
⎪⎨ −<<=⎟⎠
⎞⎜⎝
⎛ +< ∫ ∫ ∫+− +− +− −− nnvseduduuuufvnDP
vn
vn
vn
vn
vnn
vnn nnn 2
120),,,(
2
1 2/1
2/1
2/3
2/3
2/)12(
2/)12( 121
KKK
⎪⎪
⎧ ≤0
 
onde ( ) ⎩⎨= contrário caso0,,,
1
21
n
nuuuf K 
 
⎧ <<<<
Método: 
Este método pretende testar se uma determinada amostra fo da e uma população 
com uma determinada distribuição teórica. 
Quando se escolhe este teste é conta que a variável seja pelo m
)(0 XF 0H . 
)(XS N
observações. Quando X é qualquer valor possível, 
N
kXS N =)( , onde k é o número de 
observações não superiores a X. 
ela hipótese Nula, de que a amostra tenha sido extraída de uma população com a 
distrib pecífica, espera-se que as diferenças entre e sejam 
pequenas e estejam dentro dos limites dos erros aleatórios. O teste de Kolm irnov 
focali
P
uição teórica es )(XS N )(0 XF
ogorov-Sm
za a maior dessas diferenças. Ao valor de )()(0 XSXF N− é chamado de desvio 
máximo, D: 
 
)()(0 XSXFmáxD N−= 
 
A Distribuição amostral de D, sob 0H , é conhecida. A tabela E dá certos valores 
críticos dessa distribuição amostral. Note-se que a significância de um dado valor D depende 
de N. 
(1.3.3) 
 
14 
Capítulo 1: Caso de uma amostra 
Exemplo 1.3.1: 
 
Suponha-se que um pesquisador esteja interessado na confirmação experimental da 
observação sociológica, de que os negros Americanos aparentam demonstrar uma hierarquia 
de preferência em relação à tonalidade de pele. Para comprovar quão sistemáticas são essas 
 o pesquisador fictício tira uma fotografia de cada um dentro de 10 indivíduos 
negros. O fotógrafo revela essas fotografias,
obtendo cinco cópias de cada uma, de tal forma 
que cada cópia difi ou em s, ser classificadas 
em cinco tipos, desde a mais clara até à mais escura. À fotografia mais escura é atribuído o 
posto 1, e para a mais clara é atribuída o posto 5. Pede-se então a cada indivíduo que escolha 
uma de entre as cinco cópias de sua própria foto. Se os indivíduos forem indiferentes em 
relação à tonalidade da cor da pele, a escolha deverá recair igualmente sobre os cinco postos 
(com ex
tão os diversos 
indivíduos deverão consistentemente manifestar preferência por um dos postos extremos. Os 
resultados est u
Tabela 1.3.1: 
preferências,
ra ligeiramente das tras tonalidade, podendo, poi
cepção, é óbvio, de diferenças aleatórias). 
Se, por outro lado, a cor tiver importância, tal como supomos, en
ão na seg inte tabela: 
Posto da foto 1 2 3 4 5 
N.º de indivíduos 0 1 0 5 4 
 
Resolução: 
Formulamos as hipóteses: 
 
ffH 543 fff ==210 : == ão há diferenças no número esperado de escolhas para 
cada um dos cinco postos, isto é, a amostra prov de uma população com um distribuição 
uniforme.) 
 
é falsa ( não são iguais). 
ção de frequências 
acumuladas teórica e a da amostra: 
 
 (N
ém a 
01 : HH 54321 ,,,, fffff
 
Com a ajuda de uma tabela, calculamos a diferença entre a distribui
15 
Capítulo 1: Caso de uma amostra 
Tabela
 
 1.3.2: 
1f 2f 3f 4f 5f 
N.º de indivíduos que 
0 1 0 5 4 
escolhem a cor 
)(0 XF 5 
1
5
 1
5
 1
5
 1
5
 1
)(0 XS 0 10
1 
10
1 
10
6 
10
10 
)()(0 XSXF N− 5
1 
10
3 
10
5 
10
2 0 
 
De seguida, calculamos o máximo entre estas diferenças: 
{ } 5,0
10
5)()(0 ==−= XSXFmáxD N 
Consultamos a tabela E que nos dá a probabilidade p associada de ocorrência (bilateral) 
de com5,0≥D 10=N : 
Utilizando um nível de significância 
.01,0≤p 
01,0=α , podemos concluir que é falsa, sendo 
assim, os indivíduos demonstram preferência na tonalidade. 
Como é observado, a tabela dá-nos intervalos de p , não sendo possível obter o seu valor 
exacto. Poderíamos escolher um 
0H
03,0=α e se, após o cálculo de D, a probabilidade 
associada estiver entre 0,01 e 0,05, não era possível dar uma resposta. 
o SPSS® p
Output 1.3.1: 
odemos obter o valor exacto de p: N
 
 
 
16 
Capítulo 1: Caso de uma amostra 
1.4. Teste de Iterações de Uma Amostra 
 
Dado uma sequência de dois ou mais tipos de símbolos, uma iteração é definida como 
uma sucess u ma s símbolos idênticos em que são seguidos e precedidos por outro 
símbolo diferente ou nenhum símb lo. 
Pistas para uma sequência não aleatória são dadas através da 
ão de um o i
o
existência de algum 
padrão. O n
reflectir a existência de algum tipo de padrão. 
Quer a situação de um núm
 aleatória
grande ou muito pequeno. 
ste teste utiliza-se quando os valores estão numa escala nominal ou ordinal, em que a 
amostra 
Dada uma sequência d m do segundo 
tipo, onde 
úmero de iterações e o comprimento, em que estão interrelacionados, devem 
Uma alternativa para saber se é ou não aleatória é baseada no número total de iterações. 
 número pequeno quer a situação de um ero grande de iterações, 
sugere que a sequência de símbolos estão dispostos de forma ordenada (não ), isto é, 
a hipótese nula é rejeitada se o número de iterações é muito 
E
 é dicotómica.
e n elementos de dois tipos, 1n do pri eiro tipo e 2n
nnn =+ 21 . Se é o número de do tipo 2, então, o 
número total de iterações na sequência é 
1 2
21
r iterações do tipo 1 e r
rrR += . Para fazer um teste para a aleatoriedade, 
precisamos da distribuição de probabilidade de R quando a hipótese nula é verdadeira. 
A distribuição de R será encontrada quando conhecerm s a distribuição de r e r , 
bastando somar as duas distribuições. Sabendo que sobre a hipótese nula todos os arranjos de 
o
 objectos é equiprovável, a probabilidade de 
1 2
21 nn + 11 rR = e 22 rR = é o número de arranjos 
L
distintos de 21 nn + objectos dividido pelo total de arranjos distintos, que é !!/! 21 nnn . Para a 
quantidade do numerador, o lema seguinte pode ser usado. 
 
ema 1.4.1: O número de formas distintas para distribuir n objectos iguais por 
r distintas células sem células vazias é n
r
≥⎟⎟⎠⎜
⎜
⎝ − 
se
 lulas, em que pode ser feito em ⎜⎜⎝
⎛
−11
1
r
n
 diferentes 
.,
1
1n ⎞⎛ − r
 
De modo a obter uma quência com r iterações de objectos do tipo 1, os n objectos 
iguais deve ser postas dentro de cé ⎞−1
1 1
1r ⎟⎟⎠
17 
Capítulo 1: Caso de uma amostra 
maneira a-se d os objectos. O 
núme s distintos começando com uma iteração do tipo 1 é o produto 
⎛ −⎞
⎜⎜⎝
⎛
−
− 12
1
1 n
r
n
a iteração do tipo 2. 
O conjunto de objectos do tipo 1 e do tipo 2 deve ser alternado, e consequentemente poderá 
acontecer o seguinte: 
s. Aplic o mesmo modo para obter 2r iterações com outr 2n
ro total de arranjo
⎟⎟⎠⎜
⎜
⎝ −⎟
⎟
⎠ 11 2r
. Analogamente, para uma sequência começando com um
1 ⎞
121 ±= r ou 21 rr = . Se 121 += rr , a sequênciar deve começar com uma 
iteração do tipo 1; Se e ser o tipo 2 a começar. Caso a sequência 
pod o do er 
duplicado. Assim foi
Teorema 1.4.1: Seja e os respectivos números de iterações de objectos do 
2 n ma ostra aleatória de dimensão . A distribuição 
a probabilidade conjunta de e é 
121 −= rr então dev 21 rr =
e começar com tipo 1 ou 2., portanto, o número de arranjos distintos deve s
 provado os seguintes resultados. 
 
1R 2R 1n
tipo 1 e n objectos do tipo u am2 21 nnn +=
d 1R 2R
⎟⎠⎜⎝ 1n
e 2=c se 21 rr = e 1=c se 121
⎟⎜
⎞⎛ −
⎠
⎞
⎝
⎛ −
21
1
1
1
n
nn
 (1.4.1) 
ond
⎞⎛ += 21),(, 2121 n
f rrRR 
⎟⎟⎠⎜
⎜
⎝ −⎟
⎟⎜⎜ −
21
1rr
c
 
±= rr . 
 
Corolário 1.4.1: A distribuição da probabilidade marginal de é 1R
11
1
2
1
21
,,2,1
11
nr
n
n
nn
K=
⎟⎟⎠
⎞
⎜⎜⎝
+
⎟⎟
⎞
⎜⎜
⎛ +
⎟⎟
⎞
⎜⎜
⎛ −
 
 2R trocando posições de 1n com 2n e vice-versa. 
 
1
1
)(
1
11 n
rr
f rR ⎛
⎠⎝⎠⎝ −=
 Similar para
Teorem
 do tipo 1 e do tipo 2, numa amostra aleatória é 
,,2,1
21
22
=
,,2,1
11
=
=
ourr
nr K
 
nr K
121 ±= rr
(1.4.2) 
a 1.4.2: A distribuição de probabilidade de R , número total de iterações e 
21 nn += objectos, 1nn 2n
18 
Capítulo 1: Caso de uma amostra 
⎪⎪
⎪⎪
⎪
⎩
⎪⎪
⎪⎪
⎪⎪
⎧
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
⎟⎟⎠
⎞
⎜⎜⎝
⎛
−
−
⎟⎟⎠
⎞
⎜⎜⎝ −
+⎟⎟⎠⎜
⎜
⎝ −⎟
⎟
⎠⎜
⎜
⎝ −
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
⎟⎟⎠
⎞
⎜⎜⎝
⎛
−
−
⎟⎟⎠
⎞
⎜⎜⎝
⎛
−
−
parérse
n
nn
r
n
rrr
imparérse
n
nn
r
n
r
n
1
21
2121
1
21
21
2/)1(
1
2/)3(2/)3(2/)1(
12/
1
12/
1
2
 (1.4.3) 
 
nn
⎪⎨ ⎛ −⎞⎛ −⎞⎛ −
=
nnn
rf R
111
)(
 para ,3,2r 21,= K + 
 
1. Dispo observa sua ordem ncia; 
2. C
Método: 
r as 1n e 2n ções na de ocorrê
ontar o número r de iter
3. Det robabilida ass valor tã mo quanto o 
valor observado de r. Se t abilidade inferior, 
ações; 
erminar a p de, sob 0H , ociada a um o extre
al prob é igual, ou a α , rejeitar . A 
técnica para a determinação do valor de p depende do tama e 
3.1. S ambos n eriores a r à tabela abela FI dá o 
valor de r que é tão pequeno que a sua probabilidade associada, sob é 
 tão grande que a sua probabilidade 
 0H
nho dos grupos 1n 2n : 
e 1n e 2n são ão sup 20, recorre F. A t
0H
025,0=p ; a tabela FII dá o valor de r que é
associada é 025,0=p . Para uma prova bilateral consideramos os dois valores, ao 
nível 05,0=p . Para uma prova unilateral
consideramos a tabela correspondente 
mbém a um nível aos valores previstos ta 05,0=p . 
3.2. Se 1n ou 2n for superior a 20 então determinar uma aproximação à Normal através 
da se guinte fórmula: 
 
( )
( ) ( )1
12
21
2
21
21
21
−++
⎟⎟⎠
⎞⎛ ++
nnnn
nn
nn
(1.4.1) 
22 212121 −−
==
nnnnnn
z
rσ 
⎜⎜⎝
−− rr rµ
19 
Capítulo 1: Caso de uma amostra 
calculado o valor de z, recorrer à tabela A. 
Apresentamos uma tabela onde é dado o total de pagamentos feitos pelas equipas da 
iga Nacional de baseball dos EUA: 
Tabela 1.4.1: Pagamentos em milhões de dólares. 
 
Exemplo 1.4.1: 
 
L
 
Equipa Pagamento Equipa Pagamento 
Atlanta 47.93 Montreal 15.41 
Chicago Cubs 31.45 New York Mets 23.46 
Cincinnati 40.72 Philadelphia 29.72 
Colorado 38.19 Pittsburgh 21.25 
Florida 30.08 San Diego 27.25 
Houston 26.89 San Francisco 34.79 
Los Angeles 34.65 St. Louis 38.92 
 
A mediana deste conjunto de números é de 30,765. 
 valor maior que a mediana. 
ência aleatória. Com um nível de 
significância 
Convertemos os valores indicados na tabela para zeros e uns, o zero corresponde a um 
valor menor que a mediana e o um corresponde a um
Obtemos a seguinte sequência: 
1,1,1,1,0,0,1,0,0,0,0,0,1,1 
Queremos saber se os valores estão numa sequ
05,0=α . 
Resolução: 
 
Formulamos as hipóteses: 
0H : os zeros e uns ocorrem em ordem aleatória 
01 : HH é falsa. 
 
O número de iterações é 5=r ; 1 e 72 =n =n 7
 s para o r com a ajuda da Tabela F que nos dá o seguinte 
resultado: 
13 
Calculamos os extremo
3 5 
Região de Rejeição Região de Rejeição 
Região de Aceitação 
20 
amendes
Rectangle
Capítulo 1: Caso de uma amostra 
 
 
odo, 
concluímos que, com um nível de significância 
 
 
Como r pertence ao intervalo de aceitação, podemos aceitar 0H , deste m
05,0=α , os pagamentos ocorrem de forma 
aleatória. 
 
Podemos verificar que estas tabelas não nos dão o valor de p, apenas um intervalo de 
rejeição. Quer no Mathematica®, quer no SPSS® podemos calcular de uma forma exacta o 
valor da probabilidade associada. 
Vejamos então no SPSS: 
 
Output 1.4.1: 
 
Como podemos observar a probabilidade associada é de 164,0=p , assim chegamos ao 
mesmo resultado, isto é, aceitamos a hipótese nula. 
No Mathematica® usamos dois procedimentos, um para converter para zeros e uns 
outro para o cálculo da probabilidade: 
Guardamos os valores numa variável do tipo lista: 
 
Pagamentos = 47.93, 31.45, 40.72, 38.19, 30.08, 26.89, 34.65, 15.41, 
23.46, 29.72, 21.25, 27.25, 34.79, 38.92 
 
 
convertemos para zeros e uns: 
ZeroUns = convertToZerosAndOnes pagamentos 
1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 
21 
amendes
Placed Image
Capítulo 1: Caso de uma amostra 
 
e calculamos a probab
npmRunsTest ZeroUns 
ilidade associada: 
Number of Runs - > 5 
Two- Sided PValue - > 0.155012 
 
Concluímos, do mesmo modo, que não há razão para rejeitar a hipótese nula. 
 
omo conclusão para este teste, podem a ajuda do computador, não 
é nec a
C os afirmar que, com
essário fazer uma aproximação à normal, visto que, não tem limitação das tabelas. 
22 
Capítulo 2: Caso de duas amostras relacionadas 
CAPÍTULO 2: CASO DE DUAS 
tro. 
 
2.1 Teste dos Sinais 
 
É dado uma amostra aleatória de pares ordenados da forma 
)y , cada par é substituído por um sinal mais ou menos depende 
se o prim aior ou menor. 
1.
2. Determ embros de cada par; 
. Determinar N = número das diferenças com sinal; 
 sociada à ocorrência, sob , de um 
AMOSTRAS RELACIONADAS 
 
Empregam-se os testes para duas amostras relacionadas quando queremos determinar, 
para uma mesma situação, se duas abordagens, tratamentos ou métodos são diferentes ou se 
um é melhor que o ou
( ) ( ) ({ }2122211211 ,,...,,,, nn yyyyy
eiro valor é m
 
Método: 
 Emparelhar n pares; 
inar o sinal da diferença entre os dois m
3
4. O método para determinar a probabilidade as 0
valor tão extremo quanto o valor observado de 
H
z depende do tamanho de N: 
i. Se , a tabela D teral associada a uma 
valor tão pequeno quanto o valor esperado 
25≤N dá a probabilidade unila p
x = número de sinais com menor 
frequência. Duplica-se o valor da pr
ii. Se N , calcular o valor de 
obabilidade quando se trata de um teste 
bilateral. 
> 25 z mediante o emprego da fórmula: 
 
N
Nx 1)5,0( −±
z
1
2= 
2
 
Utiliza-se 5,0+x quando Nx 21< , caso contrário, 5,0−x . 
al duplicar o 
valor de 
lor da probabilidade obtida no teste não for superior a
A tabela A dá os valores unilaterais de p , para um teste bilater
 α , rejeitar 
(2.1.1) 
0H . 
p . 
Se o va
23 
Capítulo 2: Caso de duas amostras relacionadas 
Exemplo 2.1.1: 
essor acredita 
que u
Tabela
8 76 60 46 86 33 94 122 75 65 80 111 62
Depois 21 85 58 58 91 32 106 145 83 78 80 122 75
 
Um professor da disciplina de alemão pretende avaliar o impacto de uma viagem, com a 
duração de uma semana à Alemanha, sobre o vocabulário dos estudantes. O prof
ma semana na Alemanha resultará num acréscimo significativo das palavras do 
vocabulário dos seus alunos, antes e depois de regressarem da viagem, tendo obtido os 
seguintes resultados: 
 
 2.1.1: 
Antes 9
1 
esolução: 
ormulamos as hipóteses: 
 Não há diferenças, i esmo de sinais “-”. 
é falsa. 
 
R
 
F
0H : sto é, o número de sinais “+” é o m
H 01 : H
 
Iremos usar o teste dos sinais, escolhendo um 05,0=α . 
Após a análise dos pares ordenados verificamos a seguinte sequência de sinais: 
+ + - + + - + + + + + +i 
12=N (ne 2=x ste caso houve um empate) e 
 
25≤NComo , recorremos à tabela D, e verificamos que para uma prova unilateral o 
valor de p é de 0,019, mas como a prova é bilateral 038,0=p 
Sendo assim, rejeitamos a hipótese nula, dado lugar à hipótese alternativa, concluindo 
endável os alunos irem à Alemanha. 
Vam ver como seria no computador este exemplo: 
Após a introdução dos dados no SPSS®, teríamos os seguintes resultados: 
que seria recom
 
Para o caso de grandes amostras a contagem de sinais seriam demorados e susceptível a 
erros e teríamos que utilizar uma aproximação, seria prudente a utilização de um computador. 
os
24 
Capítulo 2: Caso de duas amostras relacionadas 
 
.1: Output 2.1
 
 
Como pode-se verificar, ermos visualizar o valor da probabilidade de um 
modo mais exacto, podemos ver também o número total de sinais que ocorrem. 
parâmetr
empates 
 
npmSignTestFrequencies 2, 10 
 além de pod
Outro modo seria utilizando o Mathematica®, na função a utilizar damos como 
os: o número de sinais positivos e o número de sinais negativos, excluindo os 
em ambos os casos: 
Title: Sign Test 
Test Statistic: Number of Pluses is 2 
Distribution BinomialDistribution 
2 - sided p- value - > 0.0385742 
 
os verificar que o valor de p é dado com maior número de casas decimais. 
 
2.2 Teste de McNemar 
duas amostras relacionadas, isto é, tem como objectivo avaliar a eficiência de situações 
 que cada o indivíduo é utilizado como o seu próprio controlo. Utiliza-
se a m escala nominal para avaliar alterações da situação “após” em relação à 
situação “antes”. 
Podem
 
O teste desenvolvido por McNemar é usado para analisar frequências (proporções) de 
“antes” e “depois”, em
ensuração em
 
Método: 
1. Enquadrar as frequências observadas numa tabela de quatro células na forma 
seguinte: 
25 
amendes
Rectangle
Capítulo 2: Caso de duas amostras relacionadas 
Tabela 2.2.1: 
+ A B
- C D
Depois
Antes
- +
 
As células A e D são consideradas
células de mudança, enquanto que as células B e C 
são células que não muda de estado. O total de indivíduos que acusam mudança é 
pois ? ositivo” e a 
probabilidade de “Antes ? Positivo; Depois ? Negativo” e , calcular as 
A e D: 
 
DAm += ; 
2. Considerando 1p a probabilidade de “Antes ? Negativo; De P 2p
21 pp =
frequências esperadas nas células )(21 DAE += . 
as frequênciasSe esperadas são inferiores a 5 , empregar a prova binomial em 
substituição á de McNemar, neste caso, DAN += e { }DAx ,min= ; 
3. Ca 2X so não se verifique que as frequências são inferiores a 5, calcular o valor de 
com o emprego da seguinte fórmula: 
 
( )
DA
DA
X +
−−=
2
2 1 com gl = 1 
va 
unilateral, basta dividir por dois o valor tabelado. Caso o valor de p, exibido pela 
tabela, não supera 
 
4. Mediante referência à tabela C, determinar o probabilidade, sob 0H , associada a um 
valor tão grande quanto o valor observado de 2X . Se se tratar de uma pro
α , rejeitar m
 
Exem lo 2.2.1: 
 
Dada a seguinte tabela de resultados: 
 
Tabela 2.2.1: 
Marca A
Sucesso 19 11
0H e favor da hipótese alternativa. 
p
 
Marca B Sucesso Insucesso
Insucesso 4 16 
 
 
(2.2.1) 
26 
Capítulo 2: Caso de duas amostras relacionadas 
 
ificância 
de 
 
Queremos saber qual a melhor marca de medicamentos com um nível de sign
05,0=α . 
olução: Res
n diferenças 
entre a m células (B e C). Se verificarmos 
que B
então a m é melhor. Com base neste raciocínio, formulamos as nossas hipóteses: 
 
McNemar demo strou que A ou D não contribui para a determinação das
arca A e a marca B, Mas sim através das restantes 
 > C, podemos concluir que a Marca A é melhor que a marca B, caso contrário, se B < C 
arca B
 
0H : Não existe diferenças entre a marca A e a Marca B ( 21marcaBmarcaA == pp ) 
01 : HH é falsa. 
 
( )
1142857143,0
1619
11619 22 =+
−−=X com
 
omo 2 XX > então rejeitamos a hipótese nula, dando lugar à hipótese 
alternativa, isto é, existe diferenças entre a marca A e a marca B, sendo a marca A melhor que 
a marca B. 
 da probabilidade associada: 
 
 1=gl 
Através da tabela C, calculamos uma aproximação do valor de )1(21 α−X : 
 
0039,0)1()1( 295.0
2
1 ==− XX α 
)1(295.C 0
Com a ajuda do computador, não é preciso recorrer à tabela, podendo calcular o valor 
preciso
Output 2.2.1: 
 
27 
Capítulo 2: Caso de duas amostras relacionadas 
No Mathematica®, a função a utilizar será a mesma da binomial dando como 
parâm ero total dos valores das células onde há mudança de comportamento entre 
as ma as, a probabilidade (neste caso é 0,5) e o menor valor entre as células de mudança: 
 
pmBinomial PValue 0.5, 4 
etros: o núm
rc
n
One- Sided PValue - > 0.0592346 
Two- Sided PValue - > 0.118469 
 
om o Mathematica® chegamos à mesma conclusão do método pelas tabelas, com a 
vanta
 
ilcoxon é mais poderoso que o teste dos sinais, pois, além de considerar o 
sentido da diferença também tem em conta o seu valor e o posto em que se insere. 
 Para cada par, determinar a diferença ( ), com sinal, entre os dois valores; 
2. Atribuir postos a esses ’s independentemente de sinal. No caso de d’s empatados, 
atribuir a média dos postos empatados; 
3. Atribuir a cada p inal inal – e ele representa; 
4. Determinar 
C
gem de ser com maior precisão. 
 
2.3 Teste de Wilcoxon 
O teste de W
 
Método: 
1. id
id
osto o s + ou o s do d qu
T qu l à m s som ostos d esmo sinal; 
5. Determinar N que é igual ao t d’s co l; 
6. O processo para determinação nificân o valor o ervado de T vai depender 
de N: 
Se , a tabela G dá os valores críticos de T pa rsos tam
observado de T não supera o valor indicado na tabela, para um dado nível de significância e 
um particular N, pode ser rejeitada; 
Se , calcular o valor de z pela seguinte fórmu
 
e é igua enor da as de p e m
otal de m sina
 da sig cia d bs
25≤N ra dive anhos de N. Se o valor 
 0H
25>N la: 
24
12N)(1(
(
+
−
=
NN
NT
z (2.3.1) 4 +
)1+N
28 
Capítulo 2: Caso de duas amostras relacionadas 
Determinar a sua pr ade ada, s , mediante referência à Tabela A. 
Para uma prova bilateral, duplicar o valor de p dado. 
Se o p assim obtido não for superior a 
obabilid associ ob 0H
α , rejeitar 
 
Exemplo 2.3.1: 
valores que correspondem ao 
núme nos em diferentes profissões divididos pelo 
sexo: 
Tabela 2.3.1:
Femin 55 8556 2972 324 19448 1790 5163 12495 7594 1128 3724 614 
0H . 
 
Na tabela seguinte apresentamos uma sequência de 
ro de pessoas que trabalham à mais de 25 a
 
ino 47618 15110 65
Masculino 6523 16708 8883 7825 1002 442 11161 1661 6346 3153 4760 10946 10593 23565
 
Pretendemos determinar se existem grandes diferenças entre os sexos nas diferentes 
ocupações. 
esolução: 
amos as hipóteses: 
: Não há diferenças entre o sexo masculino e o feminino nas diferentes ocupações. 
Há diferenças entre os sexos. 
emos usar o teste de Wilcoxon, escolhendo um
 
R
 
Formul
 
0H
H :1
 
Ir 05,0=α . 
 
Dispomos os dados numa tabela para calcular as diferenças e os postos: 
 
 
 
 
 
 
29 
Capítulo 2: Caso de duas amostras relacionadas 
Tabela 2.3.2: 
iA iB iii BAd −= Postos 
47618 56523 -8 12 905 
15110 16708 -1598 5 
6555 8883 -2328 8 
8556 7825 731 3 
2972 1002 1970 7 
324 442 -118 1 
19448 11161 8287 11 
1790 1661 129 2 
5163 6346 -1183 4 
12495 3153 9342 13 
7594 4760 2834 9 
1128 10946 -9818 14 
3724 10593 -6869 10 
614 2356 -1742 6 
 
4591321173 =+++++=+T 
6061014418512 =+++++++=−T 45},min{ == −+ TTT 
 
Como N < 25 (N = 14) então estamos perante a um caso de pequenas amostras, neste 
caso basta ver qual o valor tabelado de T descrito na tabela G: 
Para um N = 14 e 05,0=α (prova bilateral) temos 21=tabeladoT 
 
Como então aceitamos a hipótese, isto é, não existe diferenças entre os 
sexos nas diferentes ocupações. 
 
No SPSS®, basta introduzir os dados em duas series de variáveis, ficando com o 
seguinte resultado: 
 
 
 
 
tabeladoTT >
30 
Capítulo 2: Caso de duas amostras relacionadas 
Output 2.3.1: 
 
 
 
 teste assimptotico. Não nos dá o valor de T mas 
sim
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Podemos observar que o SPSS faz um
 
 
 
 
Podemos observar que o SPSS faz um
Capítulo 2: Caso de duas amostras relacionadas 
31 
Output 2.3.1: 
 
 
 
 teste assimptotico. Não nos dá o valor de T mas 
sim o valor da probabilidade associada. Neste caso , então podemos concluir que 638,0=p
não existe diferenças entre os sexos. 
31 
Capítulo 3: Caso de duas amostras independentes 
CAPITULO 3: CASO DE DUAS 
 
ger a
tos, ap
ensões diferentes. 
istribuições são contínuas, uma única ordem é sempre possível, 
visto 
AMOSTRAS INDEPENDENTES 
Como os testes do capítulo 2, os testes, de seguida, apresentados, servem, de um modo 
al, para determinar se as diferenças nas amostras constituem evidência convincente de um 
diferença nos processos, ou tratamen licados a elas. A principal diferença é de que as 
amostras são independentes e como tal, podem ter dim
 
3.1 Teste de Iterações de Wald-Wolfowitz 
 
Seja duas amostras independentes mXXX ,,, 21 K e nYYY ,,, 21 K combinadas numa 
única sequência ordenada da menor à maior, não deixando de identificar a sua amostra. 
Assumindo que as suas d
que teoricamente não existem empates. Por exemplo, com 4=m e 5=n , a sequência 
poder
 distribuições são idênticas 
 para
todo o x 
esperam X e Y estejam bem misturadas na sequência obtida. Visto que, a dimensão 
+ a ostra d ulação comum. 
Com a r s idênticas precedida e 
seguida por t ero total de iterações de uma amostra 
ordenada é 
iterações sugere ên o provém de uma única amostra, mas sim de 
duas amostr as popula
menores que os i
configuração pa
também podem ticamente menores que os Y’s. Contudo, a ordem 
inversa tamb e ta
iterações não po
Em primeiro lugar, o teste de iterações é apropriado quando a hipótese alternativa é 
bilateral 
ia ser X Y Y X X Y Y em que é indicado que o menor elemento pertence à amostra X, o 
segundo menor da amostra Y, etc., e o valor maior pertence à amostra Y. Sobre a hipótese nula 
de que as
)()(:0 xFxFH xY =
os que 
nm N= constitui um am e dimensão N de uma pop
ite ação, definida em 1.4, como uma sequência de letra
uma letra diferen e ou nenhuma letra, o núm
um indicativo do grau de mistura. Um padrão de arranjos com muito poucas 
que os N valores da sequ cia nã
as de du ções diferentes. Por exemplo, se todos os elemento de X são 
 elementos de Y, na sequência formada dever a ter só duas iterações. Esta 
rticular pode indicar que não só as populações não são equivalentes, como 
indicar que X’s são estocas
ém só contém duas iterações, , por nto, um teste baseado só no número total de 
de distinguir estes casos. 
32 
Capítulo 3: Caso de duas amostras independentes 
)() xFx x≠ para alguns x 
uma variável R aleatória como o número total de iterações numa ordem de m 
 aleatórios. 
(:1 FH Y
Definimos 
X e n Y valores
Desde que poucas iterações tendem a duvidar da hipótese nula quando a alternativa é 
, O teste de iterações de Wald-Wolfowitz (1940) para um nível de significância 1H α 
geralmente tem a região de rejeição αcR ≤ onde αc é escolhido para ser o maior inteiro que 
satisfaz αα ≤≤ )( cR quando 0H é verdadeira. 
sde que as observações X e Y são dois tipos de objectos arranjados numa sequência 
mente aleatória, se 0H é verdadeira, a distribuição da probabilidade nula de R é 
stribuição 1.4.2 do corolário 1.4.1 para o teste de iterações de um
P
De
completa
igual é di a amostra, bastando 
mudar 
os Y’s são os objectos do tipo 2. 
Este teste tem a particular vantagem de permitir comprovar qualquer tipo de diferença. 
os aplicar a prova de Wald-Wolfowitz supõe-se que a variável em 
estudo tenha distribuição básica contínua, e exige mensuração no mínimo ao nível de escala 
ordin
 e 2n para m e n respectivamente, assumindo que os X’s são os objecto do tipo 1 e 1n
Para que possam
al. 
 
Método: 
Suponhamos que nn =1 e mn =2 , os passos a seguir são: 
i. Dispor os 21 nn + valores numa única sequência ordenada; 
ii. Determinar r = número de iterações; 
iii. O método para determinação da significância do valor observado de r 
dep h e
 , a e F s o
ende do taman o de 1n 2n : 
iv. Se 20,n 21 ≤n tab la I dá o valores crític s de r para um nível de 
significância 0,05. Caso o valor observado de r não superar o valor tabelado 
para os valores dados de e , então podemo ao nível de 
gnificância 
1n 2n s rejeitar 0H
si 05,0=α ; 
v. Se um dos valores de e superar 20, podemos utilizar a seguinte 
ormal: 
1n 2n
aproximação à N
33 
Capítulo 3: Caso de duas amostras independentes 
)1()( 21
2
21 −++ nnnn
Após a determ
)2(2
5.01
2
2
212121
21
21
−−
−⎟⎟⎠
⎞
⎜⎜⎝
⎛ +−
=
nnnnnn
nn
nnr
z (3.1.1) 
inação do valor de z, determina-se a probabilidade associada 
através da tabela A. Se o valor p não for maior que p α então devemos rejeitar 
Teoricamente, não deveria ocorrer empates nos valores de uma prova de iterações, 
que as populações, das quais se extraíram as amostras, deveriam ter distribuições 
cont é o a p i bilidade das 
mens l n o rr e a r e r s. Portanto, 
por vezes, pode originar valores diferentes para 
a hipótese nula; 
 
Caso ocorram empates. 
por
ínuas. Na aplicação do m todo, p r f lta de rec são ou de sensi
urações pode eventua me te co er mp tes nos dife ent s g upo
r . Assim para abranger todos os 
epetir o método para todas as ordens diferentes. 
Caso i c e o étodo é 
inapl
 
Exemplo 3.1.1: 
 
 de discriminação de brilho) de 21 ratos 
norm o número de tentativas de reaprendizagem de 8 ratos. Queremos saber se os dois 
imais diferem nas suas taxas de aprendizagem (reaprendizagem). 
A segui a t e r r feitas pelos 
ratos do grupo g
Tabela 3.1.1: 
Ratos A 20 55 29 24 75 56 31 45 
casos, deve-se r
 chegue a d ferentes de isõ s s bre a hipótese nula, então, este m
icável. 
Num estudo destinado a comprovar a teoria da equipotencialidade, Ghiselli comparou o 
número de tentativas de aprendizagem (numa tarefa
ais com
grupos de an
nte tabel dá-nos as tenta ivas de apr ndizagem ( eap endizagem) 
 A e do rupo B: 
Ratos B 23 8 24 15 8 6 15 15 21 23 16 15 24 15 21 15 18 14 22 15 14
 
 
 
34 
Capítulo 3: Caso de duas amostras independentes 
Resolu
s : 
 difer s
inação de brilho. 
Os dois grupos de ratos diferem em relação à taxa de aprendizagem 
(reaprendizagem). 
 
A prova a escolher é a prova de Wald-Wolfowitz, pois é uma prova global para a 
diferença entre duas amostras. O nível de significância a escolher será 
ção: 
 
Formulamos as hipóte es
0H : Não há ença entre os ratos normais e os ratos em período pós-operatório com 
lesões corticais, no que diz respeito à aprendizagem (ou reaprendizagem) numa 
tarefa de discrim
H :1
01,0=α . 
Dispomos por ordem crescente e contamos o número de iterações: 
 
Tabela 3.1.2: 
 20 Valores 6 8 8 14 14 15 15 15 15 15 15 15 16 18
Grupo B B B B B B B B B B B B B B A 
Iterações 1 2 
Tabel 
21 21 22 23 23 24 45 55 56 75 
a 3.1.2 (continuação):
Valores 24 24 29 31
Grupo B B B B B B A B A A A A A A 
Iterações 3 4 5 6 
 
 
Neste caso o número de iterações é 61 =r , mas, note-se que há empates entre os dois 
grupo
Tabela 3.1.3: 
Valores 6 8 8 14 14 15 15 15 15 15 15 15 16 18 20 
s, neste caso, teremos que repetir a contagem: 
 
Grupo B B B B B B B B B B B B B B A 
Iterações 1 2 
 
 
35 
Capítulo 3: Caso de duas amostras independentes 
Tabela 3.1.3 (continuação): 
Valores 21 21 22 23 23 24 24 24 29 31 45 55 56 75 
Grupo B B B B B B B A A A A A A A 
Iterações 3 4 
 
Assim, ficamos com 42 =r . 
Dado que 81 =n e 20212 >=n , então não podemos recorrer à tabela F. Para que 
possamos calcular a probabilidade associada teremos que fazer uma aproximação à Normal 
com o auxilio da fórmula (3.2.1): 
 
Para : Para 41 =r 62 =r : 
[ ]
)1218()218(
218)21)(8)(2()21)(8)(2(
5,01
218
)21)(8)(2(4
2
1
−++
−−
−⎟⎠
⎞⎜⎝
⎛ ++−=z
 
 864,3= 
 
[ ]
)1218()218(
218)21)(8)(2()21)(8)(2(
5,01
218
)21)(8)(2(6
2
2
−++
−−
−⎟⎠
⎞⎜⎝
⎛ ++−=z 
 908,2= 
 
Recorrendo à Tabela A, calcula-se o valor da probabilidade associada: 
 
Para um 864,31 ≥z , verificamos que 
0=p 
 
Para um 908,22 ≥z , verificamos que a 
0014,0
a probabilidade é probabilidade é 
1 2 =p 
 
Ambas as probabilidades e , são inferiores a 1p 2p 01,0=α . Deste modo, concluímos 
que os dois grupos de animais diferem significativamente nas suas taxas de aprendizagem 
(reaprendizagem). 
e gnificância este 
método não teria efeito. 
 
Caso, alguma das probabilidades fossem superior do que o nível d si
Vejamos como o SPSS® apresentava o resultado: 
 
36 
Capítulo 3: Caso de duas amostras independentes 
 
Output 3.1.1: 
 
 
 
 
Como pod
iterações, calcul a probabilidade associada. A conclusão a
tirar seria a 
mesma pelo tradicional
Como van
visto que, no m
cálculo de po
 
3.
 
Como no teste de iterações de Wald-Wolfowitz, o teste de U de Mann-Whitney (1947) é 
baseado na ideia de que um padrão particular, exibido quando X e Y variáveis aleatórias estão 
numa única fila postos em ordem crescente, fornece informação sobre a relação entre as suas 
populações. Contudo, em vez de basear-se pelo núm
de Mann-Whitney é baseado na magnitude de Y’s em relação com os X’s, digamos que é a 
posição dos Y’s numa sequência ordenada. 
O objectivo deste teste é comprovar se dois grupos independentes foram ou não 
extraídos duma população com a mesma mediana. Para isso, as amostras devem ser 
independentes e aleatórias: uma extraída duma população com mediana não conhecida e 
outra extraída de outra população com mediana desconhecida . O nível de mensuração 
enos ordinal e as duas popul
A hipótese a comprovar é ver se as populações têm a mesma mediana, sendo a 
altern
emos constatar, o SPSS® indica-nos o número mínimo e máximo de 
ando para cada um
método . 
tagem para o SPSS®, é o modo rápido como se calcula as probabilidades, 
étodo tradicional, em caso de empates, temos que repetir a ordenação e o 
dendo provocar maior número de erros. p ,
2 Teste U de Mann-Whitney 
ero total de iterações, o critério do teste 
1M
2M
tem que ser pelo m ações devem ter uma distribuição contínua. 
ativa, as medianas serem diferentes ou uma maior do que a outra. 
 
37 
Capítulo 3: Caso de duas amostras independentes 
 
Método: 
s aos valores, em caso de empate, fazer a média dos postos 
correspondentes; 
a determinar U basta recorrer à fórmula seguinte: 
 
 
1. Determinar os valores 1n (=número de casos do menor grupo) e 2n ; 
2. Dispor em conjunto os valores dos dois grupos, ordenando-os de forma ascendente; 
3. Atribuir posto
4. Par
);min( 21 UU= U (3.2.1) 
Sendo: 111
)1( RnnnnU −211 2
++= e UnnU 1212 −= 
com s postos atribuídos à amostra 1; 
ar a significância do valor de depende de : 
ma prova bilateral basta duplicar o valor 
nstar na tabela, deve ser 
inte tado como
 1R = soma do
5. O método para determin 2n
i. Se 82 ≤n , a tabela J dá a probabilidade exacta associada a um valor tão 
pequeno quanto o valor de U. Para u
obtido na tabela, Caso o valor de U não co
rpre UnnU −= 21' ; 
ii. Se 209 ≤≤ n , é utilizada a tabela K, que dá os valores2 críticos de U para 
níveis de significância de 0,001, 0,01, 0,025, 0,05 para um teste unilateral, 
duplicando estes valores para u ilateral. Caso o valor observado de 
aior do que /2, deve ser interpretado como U’ descrito na alínea 
r
 Se n pr abilidade deve r c ula atr és d pro ação 
is i o al, av o r q a e rm : 
 
ma prova b
U é m 21nn
ante ior; 
iii. 202 > , a ob se alc da av e uma a xim
à d tribu ção N rm atr és d valo de z ue é nos d do p la fó ula 
12
)1( 2121 ++ nnnn
2
21−
=
nnU
z 
 
ostras, expressão utilizada será: 
(3.2.2) 
Caso ocorram empates, em grandes am
38 
Capítulo 3: Caso de duas amostras independentes 
 
⎟⎟⎠
⎞−− ∑TN2⎜⎜⎝
⎛
−
−
=
N
NN
nn
nnU
z
1)1(
2
3
21
21
 
 
onde: 21 nnN += e 12
ttT −= sendo t o número de observaçõe
3
s empatadas para uma dada 
posiç
e o valor observado de U tem probabilidade associada não superior a 
ão. 
αS , rejeitar a 
hipótese nula. 
 
Exemplo 3.2.1: 
 
a disciplina de Estatística Aplicada, onde se encontra inscritos alunos do curso de 
Matem
Tabela
N
ática (ensino de) e Matemática/Informática, registaram-se as seguintes classificações 
numa das frequências: 
 
 3.2.1: 
Mat. (ensino de) 10.5 16.5 11 9.8 17.1 1.5 14.8 9.9 9.8 10.3 8.7
Mat./Informática 11.4 12.9 10.1 7.9 8.8 12.8 
 
O que se pode conclu édias das ordens das classificações. 
 
Resolução: 
ulamos as hipóteses: 
ática 
Há diferenças entre as médias das ordens (teste bilateral). 
 
pós a contagem do número de casos em ambas as amostras temos: 
 
(3.2.3) 
 ir acerca das m
Form
0
(ensino de) e de Matemática Informática 
H : Não há diferenças entre as médias das ordens das notas dos alunos de Matem
H :1
A
39 
Capítulo 3: Caso de duas amostras independentes 
40 
61 =n e 112 =n 
Calculemos U: 
Tabela 3.2.2: 
1,5 7,9 8,7 8,8 9,8 9,8 9,9 10,1 10,3 10,5 11 11,4 12,8 12,9 14,8 16,5 17,1
E I E I E E E I E E E I I I E E E 
1 2 3 4 5,5 5,5 7 8 9 10 11 12 13 14 15 16 17 
 
34)141312842(
2
)16(61161 =+++++−+×+×=U 
32341162 =−×=U 32)32;34min( ==U 
 
Como 9 202 ≤n recorremos à tabela J: ≤
Para 61 =n , 112 =n e 05.0=α (bilateral), 
temos
m
populaçõ
Vej
Após a introdução dos valores, dá-nos o seguinte resultado: 
 
Output 3.2
: 3=tabeladoU . 1
 
Co o calculadotabelado UU < , podemos concluir que as duas amostras provêem de 
es com a mesma média. 
 
amos como podemos resolver este exemplo no SPSS®: 
.1: 
 
 
 
 
 
Capítulo 3: Caso de duas amostras independentes 
É claro que existe clara vantagens em utilizar o SPSS®. Pois, dá um quadro resume que 
contém o valor exacto da probabilidade, a probabilidade assimptótica e tam ém o valor de U. 
Tendo como principal vantagem o pouco tempo gasto para o emprego deste teste. 
No Mathematica® coma ajuda da função npmMannWhitneyTest[list1,list2], fica: 
Mat
Mat 0
rpm M
b
Ensino = 10.5, 16.5, 11, 9.8, 17.1, 1.5, 14.8, 9.9, 9.8, 10.3, 8.7 
Informatica = 11.4, 12.9, 1 .1, 7.9, 8.8, 12.8 
MannWhitneyTest MatEnsino, atInformatica 
Title: Mann- Whitney Test 
Sample Medians: 10.75, 10.3 
Test Statistic: 32 .
Distribution: Normal Approximation 
2 - Sided PValue - > 0.919895 
ina-se especificamente a dados de mensuração mínima na escala 
ordinal. Esta prova tem como objectivo ver se as populações têm a mesma oscilação, isto é, o 
teste de Moses é aplicável quando é previsto que um dos grupos tenha valores altos, e o outro 
alores baixos. 
 deste teste é que não requer que as populações tenha medianas 
iguais. Todavia, Moses (1952b) salienta que um teste baseado em medianas ou em postos 
médios, por exemplo, o teste de Mann-Whitney, é mais eficiente, devendo, por 
conse ialmente útil quando existem 
razõe a priori para esperar que determinada condição experimental conduza a escores 
extrem ou em outra direcção. 
Mé
es são: 
eja e o número de casos de controlo e experimentais respectivamente. 
ar q eno arbitrário; 
 
Esta função apenas dá um valor aproximado de p. 
Podemos concluir que para fazer um teste com maior rigor e rapidez, o SPSS® seria a 
melhor escolha, pois o SPPS® calcula o valor exacto. 
 
3.3 Teste de Moses para reacções extremas 
 
O teste de Moses dest
v
A principal vantagem
U
guinte, ser preferido à prova de Moses. Esta última é espec
s 
os em uma 
 
todo: 
Os passos a seguir para o teste de Mos
S Cn En
1. Antes de reunir os dados deve-se especific Será um número pe u h .
41 
Capítulo 3: Caso de duas amostras independentes 
2. Reunidos os dados, dispô-los em postos em uma única série conservando a 
ntidade do grupo em cada posto; 
D t m â n i d s
eliminar os postos mais extremos dos cada extremidade da respectiva 
série, isto é, 
ide
3. e er inar o valor de s , mbito ou abra gênc a o postos de controlo, após h
 h C ’s em
112 +−= CCsh (3.3.1) 
onde, é o posto que corresponde o último grupo de controlo, retirando h valores 
 corresponde ao primeiro posto do grupo de controlo, retirando h 
4. Determinar o valor de 
2C
de controlo e 1
valores de controlo; 
C
g
, excesso do valor observado de sobre ,ou seja, 
5. Determinar a probabilidade associada aos dados observados, calculando o valor de 
 pela fórmula: 
hs hnC 2−
)2( hnsg Ch −−= ; 
p
 ( )
⎟⎟⎠⎜
⎜
⎝ Cn
E
⎞⎛ +
⎟⎟⎠⎜
⎜
⎝ −⎟
⎟
⎠⎜
⎜
⎝=+−≤
∑
EC
EC
Ch nn
ini
ghnsp 2 
⎞⎛ −++⎞⎛ −−+
=
g
i E
ihnhni
0
1222
m caso de ocorrência de empates entre grupos, considerar esses empates de todos 
odos possíveis e determinar para cada um deles. A média desses p’s é então 
utilizada para a decisão; 
6. Se p não superar 
pos m
α , rejeitar 
 
xemplo 3.3.1: 
s e o 
grupo
inutos e o 
grau d . o grau 20 significa que a pessoa tem pavor a 
ratos.
 
(3.3.2) 
.0H 
E
 
Num estudo para avaliar o grau de medo, perante ratos, escolheu-se dois grupos de 
indivíduos. O grupo C, constituído por 7 indivíduos, que trabalha diariamente com rato
 E, formado por 6 indivíduos, têm dificuldades em controlar o medo, quando estão 
próximos de ratos. 
Quer o grupo C quer o grupo E estiveram em contacto com ratos durante 10 m
e medo foi medido numa escala de 0 a 20
 Os resultados foram: 
42 
Capítulo 3: Caso de duas amostras independentes 
 
 
Tabela 3.3.1: 
Grupo C 6 5 10 7 12 3 8 
Grupo E 0 4 11 18 9 19 
 
Será que as duas amostras provêem da mesma população? 
 
Resolução: 
vidimos em dois casos: o da esquerda com
Formulamos as hipóteses: 
0H : Não há diferenças entre o grupo C e o grupo E. 
 :1H Há diferenças entre os dois grupos. 
 
Di 0=h e o da direita com 
po: 
Tabela 3.3.2: 
Posto 
1=h . 
Dispomos os valores em postos, conservando o gru
 
1 2 3
Grupo E C E
 
 
Determinamos
7=Cn : 
g
lizandEntão uti
( ) ∑=≤h
 0=
10 isp
 
 Sendo α
entre os grupo
5 11 12 13
Tabela 3.3.3: 
Posto 1 2 3
Grupo E C E
 
 4 6 7 8 9 10
C C C C E C E C E E 
 o valor de g , com 10=hs e 
3)027(10 =×−−= 
 
Determinamo
101211 =+−=hs 
: 7=Cn
g
o a fórmula 3.3.2: 
⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎟⎟
⎞⎜⎛ −⎟⎞⎜⎛ + 753 ii
( ) ∑
1
=≤ =6 ihsp⎠
⎜⎝ −⎟⎠⎜⎝=
7
13
6 i
 
,
0 i
2168 0=
, concluímos que, para qualquer um d05,0=
s C e E, sendo assim da m, as amostras provêem
4 5 6 7 8 9 10 11 12 13
C C C C E C E C E E
s o valor de g , com 6=hs e 
6149 =+−=hs 
1)127(6 =×−−= 
⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎟⎟⎠
⎞
⎜⎜⎝
⎛
−
−
⎟⎟
⎞⎜⎛ + 3i
⎠⎜⎝
7
13
6
9
0 i
i
i
 
1795, 
os casos, não e isx te diferenças 
esma população. 
43 
Capítulo 3: Caso de duas amostras independentes 
No SPSS®, após a introdução dos valores e escolha do teste, temos o seguinte 
resultado: 
Output 3.3.1: 
 
 
 
 
 
Como podemos ver no SPSS®, ele calcula a probabilidade associada para um 1=h (por 
e para um 0=h , assim não o precisamos de escolher um h no início do teste. 
ematica®, o proc im
ele escolhido) 
No Math ed ento a utilizar foi o npmMosesTest, este procedimento 
aceita m h escolhi
Prim
Amo
Amo
rpmMosesTest amostra1, amostra2, 1 
 co o parâmetros as duas amostras, sendo a de controlo a primeira, e o do: 
eiramente, criamos as duas listas e de seguida corremos o procedimento: 
stra1 = 6, 5, 10, 7, 12, 3, 8 
stra2 = 0, 4, 11, 18, 9, 19 
h = 1; Sh 6 =
Nc = 7; Ne = 6; N = 13 
Valor Unilateral de p: 0.179487 
Valor Bilateral de p: 0.358974 
o podemos verificar, o Mathematica® dá-nos os valores de ambas a probabilidades 
e as p
 escala de medida pode ser em apenas nominal. 
Com
rincipais variáveis do teste. As vantagens deste procedimento são a rapidez e a precisão 
dos valores dados. 
 
3.4 Teste da Qui-Quadrado ( 2χ ) para duas amostras independentes 
 
O objectivo deste teste é de comprovar que dois grupos diferem em relação a 
determinada característica e, consequentemente, com respeito à frequência relativa com que 
os componentes dos grupos se enquadram nas diversas categorias. Para a comprovação, 
contamos o número de casos de cada grupo que recai nas diversas categorias, e comparamos a 
proporção de casos de um grupo nas diversas categorias, com a proporção de casos do outro 
grupo. 
A
44 
Capítulo 3: Caso de duas amostras independentes 
 
 
Método: 
Os passos a seguir para o teste são: 
1. Enquadrar as frequências observadas numa tabela de contingência . Utilizando 
as k colunas para os grupos e as r linhas para as condições. Assim para este teste, 
a ( ) de cada célula fazendo o produto dos totais 
3. P rar dois casos: 
Se 
rk ×
2=k ; 
ijE2. Determinar a frequência esperad
marginais referentes a cada uma e dividindo-o por N. (N é o total de casos); 
ara determinar o valor de χ há que conside2
 a fórmula será: ( )2>r ∑∑ −= r k ijij E EO
2
2χ 
= =
 = número de casos observados na categoria i no grupo j 
o grupo j sob 
= número de grupos na classificação 
i j ij1 1
ijO
ijE = número de casos esperados na categoria i n 0H 
k 
r = número de categorias na classificação; 
Se 
 
2=r então consideramos a seguinte tabela: 
 
Tabela 3.4.1: 
 Grupo 1 Grupo 2 Total
Categoria 1 A B A+B
Categoria 2 C D C+D
Total A+C B+D N 
 
Então temos a fórmula: 
))()()((
2
2
2
DBCADCBA
NBCADN
++++
⎟⎠
⎞⎜⎝
⎛ −−
=χ 
Esta fórmula é um pouco mais fácil da aplicar do que a fórmula (3.4.1), pois 
requer apenas uma divisão. Além disso, tem a principal vantagem de 
(3.4.2) 
(3.4.1) 
45 
Capítulo 3: Caso de duas amostras independentes 
incorporar uma correcção de continuidade que melhora sensivelmente a 
aproximação do 2χ ; 
4. Determinar a significância do valor observado de 2χ com )1)(1( −−= krgl , com o 
auxílio da tab C. Para um teste unilateral basta dividir por dois o nível de 
significância indicado. Se a probabilidade indicada na tabela for inferior a 
ela 
α , 
rejeitar a hipótese nula. 
 
Exemplo 3.4.1: 
 
Um investigador estudou a relação entre os interesses vocacionais e a escolha do 
currículo, e a taxa de desistência do curso universitário por parte de estudantes bem dotados. 
Os indivíduos observados era no mínimo de 90 pontos 
percentuais nos testes de admissão e que haviam resolvido mudar de carreira após a matrícula. 
o pesquisador comparou os e lha curricular se manteve na 
linha considerada desejável à vista do resultado obtido no Teste Vocacional de Strong (tais 
casos sendo considerad como “positivos”) com os estudantes destacados cuja escolha 
curricular se processou em sentido diverso do indicado pelo Teste de interesse. A hipótese do 
inves da “positiva” acusam maior 
frequência de permanência na faculdade ou no curso universitário inicialmente escolhido. Os 
valores são dados na seguinte tabela: 
 
Tabel
m estudantes classificados
 studantes destacados cuja a esco
os
tigador é que os estudantes cuja escolha foi considera
a 3.4.2: 
 Positivo Negativo Total
Afastamento 10 11 21 
Permanência 46 13 59 
Total 56 24 80 
 
Resolução: 
 
Formulamos as hipóteses: 
: Não há diferenças entre os dois grupos no que diz respeito à proporção dos 
estudantes que permanecem na faculdade. 
0H
46 
Capítulo 3: Caso de duas amostras independentes 
 :1H A percentagem de permanência na faculdade é maior que os estudantes cuja a 
escolha do currículo foi considerada “positiva”. 
Iremos trabalhar com um nível de significância 05,0=α . 
 
Considerando os valores dados pela tabela ficamos com: 
 
)24)(56)(59)(21(
2
80)46)(11()13)(10(80
2
2
⎟⎠
⎞⎜⎝
⎛ −−
=χ 424,5= 
 
A probabilidade de ocorrência, sob , de com 0H 424,5
2 ≥χ 1=gl é 
01,0)02,0(
2
1 =<p . Como este valor é inferior a 05,0=α , a decisão é rejeitar . Conclui-
se, pois,
que os estudantes bem dotados cuja escolha de currículo foi considerando “positiva” 
acusam maior frequência de permanência na universidade do que os estudantes bem dotados 
cuja escolha foi considerada “negativa”. 
 
No SPSS® temos o seguinte Output: 
 
Output 3.4.1: 
0H
 
 
 
O SPSS® dá-nos o valor de , com e sem o factor de correcção de continuidade e 
calcula o valor assimptótico da prob ade associada 
2χ
abilid 009,0=p . 
O procedimento para o Mathematica®, que será descrito a seguir, serve só para as 
tabelas de contingência . Este procedimento tem a particularidade de ter uma opção para 22×
47 
Capítulo 3: Caso de duas amostras independentes 
a escolha dois tipos de co (1934) , já considerado 
na fórmula 3.4.2, e o m ima considerado: 
No caso de não escolhermos o método de correcção, o procedimento apenas calcula o 
valor de 
rrecção de continuidade: o método de Yates 
étodo de Haber2. Vejamos então para o exemplo ac
p sem utilizar um dos factores de correcção: 
 
rpmChiSquare2x2Test 10, 11, 46, 13 
Title: Chi Square Test 
Distribution: Chi Square 
Correction: None 
Two- Sided P- Value: 0.00915693 
One- Sided P- Value: 0.00457847 
rpmChiSquare2x2Test 10, 11, 46, 13 mthd®yates 
Title: Chi Square Test 
Distribution: Chi Square 
Correction: Yates 
Two- Sided P- Value: 0.0198649 
One- Sided P- Value: 0.00993245 
 
rpmChiSquare2x2Test 10, 11, 46, 13 mthd®haber 
Title: Chi Square Test 
Distribution: Chi Square 
Correction: Haber 
Two- Sided P- Value: 0.0125872 
One- Sided P- Value: 0.00629361 
 
Qualquer um dos três casos chega à decisão de rejeitar a hipótese nula. Assim 
os, que a percentagem de permanência na faculdade é maior que os estudantes cuja a 
escolha do currículo foi considerada “pos
concluím
itiva”. Note-se que qualquer dos valores é 
semelhante. 
atica® está em clara vantagem em relação à utilização da tabela 
ou me
 
Sendo assim o Mathem
smo do SPSS®. 
 
siderando { }2,1,2,1:min === jiOO ij2 Con temos: 
Se então OOij 2≤ =D maior múltiplo de 0.5 que é OOij −< ou 
se então OOij 2> 5.0−−= OOD ij o teste estatístico fica: 
))()()((
23
2
DBCADCBA
DN
H ++++=χ 
48 
Capítulo 4: Caso de k amostras relacionadas 
CAPÍTULO 4: CASO DE K 
AMOSTRAS RELACIONADAS 
 
O objectivo principal dos testes que irão ser apresentados, é comprovar a hipótese de 
que a
Há 
igual tam
pode(m) N grupos pode ser 
mensurado sob todas as k condições. Em tais planos, devem-se usar os testes estatísticos aqui 
apres
 tabela 
de contingência. 
odo, o teste de Cochran permite investigar quando um conjunto de k proporções 
relacionadas difere significativamente. 
 
Método: 
Os passos a seguir para o teste são: 
1. Para dados dicotom zados, at ir o valo ” a cada “su esso” e o valor “0” a cada 
“insucesso”; 
2. Dispor os dados numa tabela 
s k amostras tenham sido extraídas da mesma população ou de populações idênticas. 
dois planos básicos para comprovar k grupos. No primeiro deles, as k amostras de 
anho são postas em correspondência de acordo com determinado(s) critério(s) que 
afectar os valores das observações. Ou então cada um dos
entados. 
 
4.1 Teste Q de Cochran 
 
O modelo típico para o teste Q de Cochran (1950) envolve um conjunto de 2≥k 
tratamentos que são aplicados independentemente para cada N indivíduos. Os resultados de 
cada tratamento são guardados como uma variável dicotómica de sucesso e insucesso. Os uns 
e zeros (que correspondem ao sucesso e insucesso respectivamente) são dispostos numa
Deste m
i ribu r “1 c
Nk × , com N linhas. N = número de 
casos em cada k . 
. Determinar o valor Q utilizando a fórmula: 
 
k colunas e 
 grupos
3
( )
∑ ∑
∑ ∑
= =
= =
−
⎥⎥⎦
⎤
⎢⎢⎣
⎡
⎟⎟⎠
⎞
⎜⎜⎝
⎛−−
= N
i
N
i
ii
k
j
k
j
jj
LLk
GGkk
Q
1 1
2
1
2
1
21
 (4.1.1) 
50 
Capítulo 4: Caso de k amostras relacionadas 
onde é a soma dos valores das j colunas; 
s valores das i linhas. 
4. a significância do valor observado de Q pode ser determinada mediante referência à 
uadrado com
: jG
 L é a soma doi
 
tabela C, pois Q tem distribuição aproximadamente Qui-Q 1−= kgl . 
Se a probabilidade associada à ocorrência, sob H , de um valor tão grande quanto 0
um valor observado de Q não supera α , rejeita-se a hipótese nula. 
Exemplo 4.1.1: 
 
Cada um dos quatro fãs de futebol criou um s ma para antever os resultados dos 
jogos da 1ª liga. Foram escolhidos ao acaso seis jogos, e cada um dos fãs anteviu o resultado 
de cada jogo. Os resultados dos prognósticos foram pos num tabela, utilizando “1” 
para um prognóstico bem sucedido e “0” para um prognóstico falhado. Os resultados são 
apresentados na tabela 4.1.1. Queremos testar a hipótese de que cada fã tem um sistema de 
igual efeito para antever os resultados dos jogos com um nível de significância de 5%. 
 
Tabela 4.1.1: 
Fãs 
 
iste
dis tos a 
Jogos 1 2 3 4 Totais 
1 1 1 0 0 2 
2 1 1 1 0 3 
3 1 1 1 0 3 
4 0 1 1 0 2 
5 0 1 0 0 1 
6 1 1 0 1 3 
Totais 4 6 3 1 14 
 
 
 
 
 
51 
Capítulo 4: Caso de k amostras relacionadas 
Resolução: 
As hipóteses são as seguintes: 
: Cada fã tem um sistema de igual efeito para antever os resultados dos jogos de 
futebol. 
 Existe diferenças nos efeitos dos sistemas criados pelos fãs. 
Primeiro dispomos os resultados de novo numa tabela, que será apenas uma 
modificação da tabela 4.1.1: 
 
Tabela 4.1.2: 
Fãs 
0H
 :1H
Jogos 1 2 3 4 iL 2iL 
1 1 1 0 0 2 4 
2 1 1 1 0 3 9 
3 1 1 1 0 3 9 
4 0 1 1 0 2 4 
5 0 1 0 0 1 1 
6 1 1 0 1 3 9 
jG 4 6 3 1 14 36 
2 1jG 6 36 9 1 62 
 
auxílio da fórmula 4.4.1: 
 
Então, após o cálculo dos somatórios temos, com o 
( )[ ] 8,7
36144
146243 2 =−×
−××=Q 
 
Calculamos agora a significância do valor observado, com a ajuda da tabela C: 
314 =−=gl 
Assim, como 05,002,0 ≤≤ p e 05,0=α , rejeitamos a hipótese, concluindo que existe 
diferen feitos dos sistemas criados pelos fãs.ças nos e 
 
 
 
52 
Capítulo 4: Caso de k amostras relacionadas 
No SPSS® temos os seguintes resultados: 
Output 4.1.1: Output 4.1.2: 
 
 
 
 
De mas teremos maior certeza de rejeitar a hipótese nula 
se activás aior precisão como consta no Output 4.1.2. 
No a®, ransQTest: 
rpm 
 facto, p está entre 0,01 e 0,05,
semos a opção de fazer um teste com m
 Mathematic utilizaremos a função npmCoch
resultados = 1, 1, 0, 0 , 1, 1, 1, 0 , 1, 1, 1, 0 , 0, 1, 1, 0 , 0, 1, 
0, 0 , 1, 1, 0, 1 
CochransQTest resultados , mthd®approx 
Title: Cochran Q Test 
Test Statistic: 7.8 
Totals: 4, , 3, 1 
tion: Chi quare 
Column 6
 SDistribu
PValue:
 
rpmCoch
0.0503311 
ransQTest resultados , mthd®exact 
Title: Cochran Q Test 
Test Statistic: 7.8 
Column Totals: 4, 6, 3, 1 
Distribution: Exact 
PValue: 0.0481771 
 
a tabela na lista “resultados”. Com a opção para approx, obtemos um 
valor aproximado de , baseado na distribuição da Qui-Quadrado com três graus 
de lib
Foi introduzida 
053311,0=p
erdade, com este valor aceitava-se a hipótese nula o que seria um erro. Porém, 
rejeitávamos (com )05,0=α se escolhêssemos o método exacto. 
53 
Capítulo 4: Caso de k amostras relacionadas 
Para concluir, o Mathematica® é, de facto, o is indicado para os cálculos, porque dá-
nos os valores com maior precisão, emb re tados originassem respostas 
diferentes. Cabe ao investigad
 
4.2 Teste de Friedman 
uando os dados de k amostras correspondentes se apresentam pelo menos em escala 
ordinal, o teste de Friedman (1937)
é útil para comprovar de que as k amostras tenham sido 
extraídas da mesma população. 
M
Os p
 Dispor os valores numa tabela de dupla entrada com k colunas e N linhas; 
3. Determinar a soma dos postos da cada coluna: ; 
cular o valor de , pela fórmula: 
 ma
ora os dois sul
or escolher. 
 
Q
 
étodo: 
assos a seguir para o teste são: 
1.
2. Atribuir postos de 1 a k aos valores de cada linha; 
jR
2
rχ
( )∑
=
+−+=
4. Cal
k2
j)1
jr kNRkNk 1
2 )1(
(
1χ 
onde: N é o nú
 k número de colunas; 
 soma das ordens na coluna. 
5. O método para determinar a probabilidad
associado a valor observado de depende dos tamanhos de N e k: 
bela N dá-nos as probabilidades exactas associadas a valores tão grandes 
q m observado para k=3 com N de 2 a 9 e para k=4 com N de 2 a 4. 
cedidos os valores
ui-
2 3
mero de linhas; 
 é o
jR a
e de ocorrência sobre a hipótese nula 
2
rχ
i. A ta
2
rχuanto u 
Caso os valores tenham ex da tabela N, a probabilidade 
associada pode ser determinada mediante referência à distribuição Q
Quadrado (Tabela C) com 1−= kgl ; 
6. Se a probabilidade obtida pelo método adequado indicado no item 5 não superar α, 
ita-se H0. 
 
(4.2.1) 
reje
54 
Capítulo 4: Caso de k amostras relacionadas 
Exemplo 4.2.1: 
 
A fim de avaliar se houve progressão na aprendizagem, um professor reteve as médias 
de um grupo de 4 alunos no final de cada trimestre: 
Tabela 4.2.1: 
Alunos A B C D 
1º Trimestre 8 15 11 7 
2º Trimestre 14 17 13 10 
3º Trimestre 15 17 14 12 
 
Considerando um 05,0=α , que conclusão poderá tirar? 
 
 
Hipóteses: 
: Não houve progressão na aprendizagem ao longo do ano escolar; 
 Houve progressão ao longo do ano escolar. 
 
Atribuímos os postos através da seguinte tabela e calculamos as somas: 
 
Tabela 4.2.2: 
Alunos 1º Trimestre 2º Trimestre 3º Trimestre 
Resolução: 
0H
:1H
A 1 2 3 
B 1 2.5 2.5 
C 1 2 3 
D 1 2 3 
jR 4 8.5 11.5 
2
jR 16 72.25 132.25 
 
Assim, fica: 
e então 4=N 3=k [ ] 125,7)13(4325,13225,7216
434
122 =+××−++×××=rχ 
55 
Capítulo 4: Caso de k amostras relacionadas 
56 
Com o auxílio da Tabela N temos 042,00046,0 ≤≤ p . Assim, com 05,0=α , 
rejeitamos a hipótese zagem ao longo do 
no es
 nula, concluindo que houve progressão na aprendi
a colar. 
No SPSS®, chegamos à mesma conclusão, pois, dá-nos um 022,0=p . 
 
Output 4.2.1: 
 
 
pmFriedmanTest = medias 
 
No Mathematica®, dá-nos a aproximação à Qui-Quadrado, sendo o valor mais preciso 
do que o SPSS®. 
medias = 8, 15, 11, 7, 14, 17, 13, 10, 15, 17, 14, 12 
 
r
Title: Friedman Test 
2, 13.5, 14.5 Sample Medians: 1
Test Statistic: 7.6 
Distribution: ChiSquare 
PValue: 0.0223708 
Capítulo 5: Caso para k amostras independentes 
CAPÍTULO 5: CASO DE K 
AMOSTRAS INDEPENDENTES 
 
Na análise de dados de pesquisa, o pesquisador frequentemente precisa decidir se 
s valores amostrais quase sempre são um tanto diferentes, e o problema é 
deter
populaçõ que podem ser esperadas entre amostras 
aleatórias da popu . 
 
 
O objectivo
da mesma população ou de populações idênticas em relação às médias. 
ao nível o
ão os seguintes passos a percorrer: 
tos de 1 a N; 
terminar o valor de R (soma dos postos) para cada um dos k grupos de postos; 
3. Caso não o m c r e u mula: 
diversas variáveis independentes devem ser consideradas como proveniente da mesma 
população. O
minar se as diferenças amostrais observadas sugerem realmente diferenças entre as 
es ou se são apenas variações casuais
mesma lação
5.1 Teste de Kruskal-Wallis 
 do teste de Kruskal-Wallis (1952) é ver se as diferentes k amostras provêem 
O teste supõe que a variável tenha distribuição contínua, e exige mensuração no mínimo 
rdinal. 
 
Método: 
S
1. Dispor, em postos, as observações de todos os k grupos numa única série, 
atribuindo-lhes pos
2. De
corram e pates, alcular o valo de H p la seg inte fór
)1+ (3−
j)1 1+ ∑(=
12 k
2
j
=
N
n
R
N
H
onde: = número de amostras; 
 , número de casos em todas as amostras combinadas; 
a das ordens na amostra j (colunas). 
a uma delas a média das respectivas ordens. O 
valor de pates, sendo assim, é necessário introduzir um 
factor de correcção. Deste modo, para o calculo de H deve-se utilizar a fórmula: 
(5.1.1) 
N j
k
 jn = número de casos na amostra j 
∑= jnN
 jR = som
Se houver empates, atribui-se a cad
H é influenciado pelos em
57 
Capítulo 5: Caso para k amostras independentes 
NN
T
R
H
k
−+ =
2
12
 
o en n me se s m s um o de valores 
em s); 
H depende do 
tamanho de k e do tamanho dos grupos: 
i. Se e 
N +(3
n jN(N j
j
−3−
∑1
=
∑)1 1 )
1
nde: T = tt −3 (s do o ú ro de ob rvaçõe e patada n grup 
patado
4. O método para determinar a significância do valor observado de 
3=k 5,, 321 ≤nnn
e associada, sob 
, pode-se utilizar a tabela O para determinar a 
probabilidad , de um H tão grande quanto o observado; 
ii. Em outros casos, a significância de um valor tão grande quanto o valor 
0H
observado de H pode ser determinado mediante referência à tabela C, com 
1−= kgl ; 
5. Se a probabilidade associada ao valor observado de H não superar o nível de 
significância previamente fixado, rejeitar em favor de
lo 5.1.1: 
 
Em 1996 nas semifinais da corrida de obstáculos a cavalo femininos de 400 metros os 
tempos foram os seguintes: 
Tabela 5.1.1: 
Atleta 1 54.88 54.96 55.91 55.99 56.67 57.29 
0H 1H . 
 
Exemp
Atleta 2 54.67 54.87 54.95 56.27 58.33 81.99 
Atleta 3 55.66 56.46 56.74 57.86 58.90 59.56 
 
Utilize o teste de Kruskal-Wallis, com 05,0=α , para testar se existe diferenças entre as 
atletas. 
Resolução: 
As hipóteses a testar são: 
: Não há diferenças entre as atletas; 
 Há diferenças entre as atletas. 
Dispomos os postos consoante os dados: 
5 1( . .2) 
0H
:1H
58 
Capítulo 5: Caso para k amostras independentes 
Tabela 5.1.
Atleta 1 
Posto 3 
2: 
54.88 54.96 55.91 55.99 56.67 57.29 
 
471 =R 3 5 7 8 11 1
Atleta 2 
Posto 
54.67 
 1 2 4 9 15 18 
54.87 54.95 56.27 58.33 81.99 492 =R
Atleta 3 
Posto 
55.66 
 6 
56.46 
 10 
56.74 
 12 
57.86 
 14 
58.90 
 16 
59.56 
 17 
753 =R
 
Como não há empates, calculamos H pela fórmula 5.1.1: 
 
85, 42
6
75
6
49
6)18(
2
=+−=H 
 
 
Output 5.1.1: 
)118(34712 ⎢⎡)118( ⎣+
2
⎥⎤
2
+
⎦
+
A partir da tabela C, observamos que o valor de p está entre 0,3 e 0,2, concluindo, a um 
nível de significância de 0,05, que não há diferenças entre as atletas. 
No SPSS temos o mesmo resultado mas com maior rigor e rapidez, pois sabemos agora 
que 24,0=p : 
 
 
No Mathematica® o resultado apresenta-se com maior número de casas decimais: 
 
rpmKruskalWallisTest tabela 
Title: Kruskal
Sample Medi
Wallis Test ans: 55.9, 55.61, 57.3 
Test Statistic: 2.8538 
Distribution: Chi Square 
PVa ue - > 0.240052 l
59 
Capítulo 6: Medidas de Correlação 
CAPITULO 6: MEDIDAS DE CORRELAÇÃO 
 
6.1 Coeficiente de Correlação por postos de Kendall: τ 
 
Suponhamos que um número de alunos está classificado por postos de acordo com as 
suas habilidades em matemática e em música. A seguinte tabela mostra os valores de cada 
aluno
B C D E F G H I J 
 designado por letras: 
Tabela 6.1.1: 
Aluno: A 
Matemática: 7 4 3 10 6 2 9 8 1 5 
Música: 5 7 3 1 9 6 2 8 4 10 
 
Queremos saber se há alguma relação entre a habilidade na matemática e na música. 
Observando os resultados da
tabela anterior, vemos que a concordância entre eles está longe 
de ser perfeita, mas alguns alunos ocupam a mesma ou perto da mesma posição entre as duas 
disciplinas. Podemos ver a correspondência mais facilmente se na tabela for dada uma ordem 
natural aos resultados de matemática: 
 
Aluno: I F C B J E A H G D 
Tabela 6.1.2:
Matemática: 1 2 3 4 5 6 7 8 9 10 
Música: 8 9 3 7 4 1 5 2 6 10 
 
 intensidade da correlação dos postos. esta medida (que será um coeficiente que 
designamos por 
O que queremos saber é uma medida de correspondência entre estas duas variáveis, ou 
medir a
τ ) deve ter as seguintes propriedades: 
? Se a correspondência entre os postos for perfeita, por exemplo, se todos os indivíduos 
tiverem o mesmo posto nas duas disciplinas, τ deve ser +1, indicando uma correlação 
perf
? S
eita positiva; 
e houver uma discordância perfeita, por exemplo, se um dos postos for o inverso do 
outro, τ deve ser –1, indicando uma correlação perfeita negativa; 
? Se houver um crescime lo dnto do va r e τ en e , o deve corresponder a um 
acré
tre –1 1 entã
scimo na relação entre as duas variáveis. 
 
60 
Capítulo 6: Medidas de Correlação 
Consideremos qualquer par de a por exemplo, o par AB. Os seus 
ostos, 7 e 4, ocorrem em ordem inversa (a ordem natural 1,...,10 é a ordem directa) e 
consequentemente atribu em directa, 
deveríamos atribuir +1. Na segunda variável (música) no par AB os postos estão em ordem 
directa, deste modo, atribuímos +1. 
cada par áveis estavam (+1) ou não 
(-1) i i
O m
lunos da tabela 6.1.1,
p
ímos o valor a este par –1. Se o par estivesse em ord
Agora, multiplicamos os dois valores do par que dá (-1)(+1)=-1. É evidente que para 
os valores seria +1 e –1, que significaria que ambas as vari
gua s em termos de ordem. 
esmo procedimento é feito para todos os 45 pares. 
O total de resultados positivos são 21=P e os negativos são 24−=−Q . Adicionando 
mos o resultado final 3os dois te −=S . 
os postos são idênticos emos postos são idênticos emSe cada um, e se os 45 valores forem positivos então o valor 
máxi
e cada um, e se os 45 valores forem positivos então o valor 
máximo de S é 45. Portanto calculamos o valor mo de S é 45. Portanto calculamos o valor τ como: 
07,0
45possívelmáximoResultado
−=−=
O valor próximo de zero indica que existe uma correlação muito pequena entre as duas 
3actualResultado
 
Consideremos o caso geral. Se tivermos duas variáveis com n valores para comparar. O 
número de pares para comparar é 
variáveis. 
( )1
22⎠⎝
1=⎟⎟
⎞
⎜⎜
⎛ nnn . Este é o número máximo de resultados 
possíveis. Se é a soma dos resultados obtidos, então definimos o coeficiente de correlação 
como: 
−
 S
)1( −nn 
2= Sτ
atemática) está na ordem 
natur da
4 1 5 2 6 10 
 
Existe um modo prático de determinar o valor de S (número de resultados positivos): 
Considerando a tabela 6.1.2. em que a primeira variável (m
al, a segun variável apresenta a seguinte sequência: 
8 9 3 7 
Considerando o primeiro valor, 8, observamos que a direita existen dois valores 
maiores. Então contribui-se para P o valor +2. Tendo em atenção o 9, encontramos, à direita, 
a contribuição de +1 para P e assim sucessivamente. Assim temos o valor de P que é 
(6.1.1) 
61 
Capítulo 6: Medidas de Correlação 
21122431512 =++++++++=P
 
 (6.1.2) 
 
 à vari bém à variável Y postos de 1 a n. 
Note-se que na tabela 6.1.1 os postos já foram atribuídos; 
m na ordem 
natural. No exemplo acima referido será a tabela 6.1.2; 
ervar a ocorrência dos postos de Y quando os postos de X se acham na ordem 
natural. Determinar o valor de S (soma dos resultados de todos os pares) pelo 
processo acima descrito; 
4. Se não há empates, aplicar a fórmula 6.1.1. 
 
Em caso de haver observações empatadas, atribuímos às observações empatadas a média 
dos postos que lhe caberiam se não houvesse empate. 
m
 consequentemente, 
⎟⎟⎠
⎞
⎜⎜⎝
⎛−=
2
2
n
PS
Método: 
1. Atribuir postos de 1 a n ável X. Atribuir tam
2. Ordenar os n indivíduos de maneira que os postos de X se apresenta
3. Obs
O efeito dos e pates consiste em modificar o denominador da fórmula 6.1.1. Neste 
caso temos: 
( ) ( ) yx TnnTnn
S
−−−−
=
1
2
1
2
τ (6.1.3) 
11
 
onde: ∑ −= )1(21 ttTx , t sendo o número de observações empatadas em cada grupo 
de empates na variável X. 
∑ −= )1( 2y
empates na v
1 ttT , t sendo número de observações empatadas em cada grupo de 
ariável Y. 
n indivíduos constituem uma amostra aleatória de alguma população, pode-se 
comp
Se os 
rovar se o valor observado de τ indica existência de associação entre as variáveis X e Y 
na população. O método depende do tamanho de n: 
 Para 10. a tabela Q dá a probabilidade associada (unilateral) a um valor tão 
grande quanto um S observado; 
. Para n>10, pode-se calcular o valor de z associado a 
≤n1.
2 pela fórmula: τ
62 
Capítulo 6: Medidas de Correlação 
( )
( )
52 +nz =
τ (6.1.4) 
19 −nn
 
 
A tabela A dá a probabilidade associada a um valor tão grande quanto um z observado. 
Se o valor de p não superar α , 0H pode ser rejeitada. 
 
Retomando o exemplo da tabela 6.1.1, vejamos o que acontece no SPSS®: 
 
Output 6.1.1: 
 
O coeficiente (τ ) é dado com maior precisão e, claro, com rapidez. O SPSS® também 
existência ou não de associação entre as variáveis. Neste caso, 
dá-nos o valor da probabilidade associada, assim podemos comprovar se o coeficiente indica 
α>p , sendo ele de 0.05, 
podemos concluir que o coeficiente indica existência de associação. 
O Mathematica®, com a função KendallRankCorrelation, dá-nos apenas o coeficiente, 
mas é neste software que consegue-se m ior precisão 
 
N KendallRankCorrelation 7, 4, 3, 10, 6, 2, 9, 8, 1, 5, 5, 7, 3, 10, 
1, 9, 6, 2, 8, 4 
a
- 0.0666667 
 
 
 
 
 
 
 
63 
Capítulo 6: Medidas de Correlação 
6.2 Coeficiente de Correlação por postos de Spearman: Sr 
É uma medida de associação que exige que ambas as variáveis se apresentem em escala 
ordinal, de modo que os objectos ou indivíduos em estudo possam dispor-se por postos em 
duas série
 
s ordenadas. 
Consideremos a tabela 6.1.1, vamos subtrair os postos da música pelos de matemática e 
amostrar os resultados na seguinte tabela: 
Tabela 6.2.1: 
Aluno: A B C D E F G H I J 
Matemática: 7 4 3 10 6 2 9 8 1 5 
Música: 5 7 3 10 1 9 6 2 8 4 
id 2 -3 0 0 5 -7 3 6 -7 1 
2
id 4 9 0 0 25 49 9 36 49 1 
 
O somatório das diferenças id deve dar zero (serve como ferramenta de verificação), 
Também na tabela mostra o quadrado das diferenças. Denotando o som
porque é a soma das diferenças de duas quantidades que cada uma delas vai de 1 a 10. 
atório destas 
diferenças por ∑
=
iciente de Spearman como 
n
i
id
0
 definimos o coef2
nn
d
r
n
i
i
−=
∑
s −
=
3 
Da qual, aplicada ao exemplo, fica 
 
0
26
1
( )
(6.2.1) 
103,01493694925009461 −=
10103 −
+++++++++−=rS
 
Método: 
 postos a variável X, de 1 a n. O mesmo para a variável Y; 
2. Determinar o valor das diferenças de cada indivíduo e elevá-lo ao quadrado (Como 
mostrado na tabela 6.2.1); 
3. Calcular aplicando a fórmula (6.2.1). 
 
1. Dispor em
Sr
64 
Capítulo 6: Medidas de Correlação 
Caso haja empates: Quando a proporção de empates na variável X ou na var é 
grande, deve-se incorporar um factor de correcção 
iável Y 
12
observações
3 ttT −= , onde t é o número de 
 empatadas em determinado posto. Assim, temos a fórmula de para o caso de 
empa
sr
tes: 
∑ ∑ 222 yx 
∑ ∑∑
=
−+
= 1
222 dyx
r
n
i
i
S
nde: 
(6.2.2) 
o ∑ ∑−−= x12 Tnnx 2 e 
3 ∑ ∑−−= y12
em que ∑ yxT ou é o somatório sobre os vários valores de T para todos os grupos de 
observações empatadas. 
 
Se os indivíduos constituem uma amostra aleatório de uma população, pode-se 
Y na população. O método dep
Tnny 2 
comprovar se o valor observado de indica a existência de associação entre as variáveis X e 
ende do tamanho de n: 
valores críticos de para níveis de significância 
0,05 e 0,01 (teste unilateral). 
3
Sr
1. Para n de 4 a 30, a tabela P, dá os Sr
2. Para 10n , pode-se determinar a significância de um valor tão grande quanto um 
Sr observado calcula-se o valor de t associado aquele valor, pela fórmula: 
≥
)2(2
2
−≈−= n
S
S t
nrt 
Em seguida determina-se a sign
1− r
ificância do valor com o auxilio da tabela B. 
o valor calculado anteriormente: 
Output 6.2.1: 
(6.2.2) 
Através do SPSS®, constatamos o mesm
 
65 
Capítulo 6: Medidas de Correlação 
É também apresentado a significância do coeficiente que, neste caso, com um 05,0=α , 
podemos concluir que o valor indica a existência de associação entre as variáveis. 
No Mathematica® apenas é fornecido o coeficiente, mas com maior número de casas 
decimais: 
N SpermanRankCorrelation 7, 4, 3, 10, 6, 2, 9, 8, 1, 5, 5, 7, 3, 10, 
1, 9, 6, 2, 8, 4 
- 0.10303 
 
6.3 Coeficiente de Concordância de Kendall: 
 
Já conhecemos dois coeficientes (
W 
τ e Sr ) para a determinação da concordância entre 
dois conjuntos de postos. Suponhamos que temos k conjuntos de postos, poderia parecer 
razoá
k 
tomar va
lo de
 
Método: 
número de juízes classificadores. Dispor os postos observados numa tabela 
vel determinar os coeficientes entre todos os pares possíveis de postos e então calcular a 
média entre eles para saber o grau de concordância das k amostras. Adoptando tal método, 
teremos que calcular ⎟⎞⎜⎛k coeficientes de correlação de postos o que seria impraticável se ⎟⎠⎜⎝2
lores muito grandes. 
O cálcu W é muito mais simples: 
1. Se n é o número de objectos ou indivíduos a serem classificados em postos, e k o 
nk × ; 
2. Para cada indivíduo, ou objecto, determinar , soma dos postos atribuídos àquele 
indivíduo pelos k juízes; 
pela fórmula seguinte: 
jR
3. Determinar S 
∑
=
=
⎟⎟
⎟⎟
⎠⎜
⎜⎜
⎜
⎝
−=
n
j
j
j
j n
RS
1
1 
4. Calcular o valor de W utilizando a fórmula: 
∑ ⎟⎞⎜⎛ n R
2
(6.3.1) 
(6.3.2) 
)(
12
1 32 nnk
SW
−
= 
66 
Capítulo 6: Medidas de Correlação 
Se houver observações empatadas, atribui-se a elas a média dos postos que lhes 
caberiam se não ho nt uz um ct o tiv a ula. uvesse empates. I rod -se fa or c rrec o n fórm
( )
12
3∑ −= ttT
 
onde t é o número de observações empatadas em ç a o e será a soma 
e todos os grupos de empates dentro de qualquer um dos k conjuntos de postos. 
iente de concordância de Kendall é 
 rela ão a um d do p sto ∑
d
Com a correcção para empates incorporada, o coefic
∑−−
=W
1
T
Tknnk )(
12 
onde ∑
T
T é o somatório
S
32
 sobre todos os valores de T para todos os k conjuntos de postos. 
odemos comprovar a significância de qualquer valor observado de W determinando a 
probabilidade associada à ocorrência, sob , de um valor tão grande quanto o S a que está 
associado. A de da probabilidade depende de : 
1. Se , a tabela R dá os valores críticos de s o os W’s significativos 
aos níveis 0.05 e 0.01; 
2. Se , podem s utilizar a fórm
P
H 0
terminação n
7≤n S as ociad com
7>n o ula: 
)1(
12
1 +nkn
2 = Sχ com gl = n – 1 
Se o valor do é igual ou superior ao valor exibido na tabela C para um dado nível 
de significância e com -1 graus de liberdade, então (de que não há relacionamento entre 
os k conjuntos de postos) pode ser rejeitada. 
 
Exemplo 6.3.1: 
 
 - Produtividade, Q - Qualidade do 
serviço e M – Motivação dos colaboradores) para análise das suas performances no mercado 
onde estão inseridas. A tabela seguinte apresenta os resultados obtidos: 
 
(6.3.3) 
(6.3.4) 
(6.3.5) 
2χ
 n 0H
Sete empresas foram avaliadas em três critérios (P
 
 
 
67 
Capítulo 6: Medidas de Correlação 
Tabela 6.3.1: 
Empresa
Critérios A B C D E F G 
P 65 52 80 48 92 77 68 
Q 58 45 76 58 88 88 55 
M 70 56 83 61 75 70 70 
 
Calcular o coeficiente de concordância de Kendall. 
Resolução: 
Primeiramente atribuímos os postos em cada critério e de seguida calculamos a soma 
dos postos por empresa: 
 
Tabela 6.3.2: 
Empresa
Critérios A B C D E F 
 
G 
P 3 2 6 1 7 5 4 
Q 3.5 1 5 3.5 6.5 6.5 2 
M 4 1 7 2 6 4 4 
jR 10,5 4 18 6,5 19,5 15,5 10 
 
A média das somas dos postos de cada empresa é calculada de seguida: 
 12
7
84
7
105,155,195,61845,10
7
7
1 ==++++++=
∑
=j
jR
 
Portanto o valor de S é 
De seguida calculamos os valores para os empates: 
Sendo 
+−+−+−+−+−+−= 222222 )125,15()125,19()125,6()1218()124()125,10(S 
205)1210( 2 =−+ 
1
12
)22()22( 33 =−+−=QT e 212
)33( 3 =−=MT então 321 =+=∑
T
T 
 
Logo, obtemos o coeficiente pela fórmula 6.3.4: 
 
68 
Capítulo 6: Medidas de Correlação 
844.0= 
)3(3)77()3(
12
Concluímos, assim, que existe uma forte correlação entre as diversas empresas. 
1
205
32 −−
=W
 No SPSS®, era muito mais fácil, pois, não teríamos que efectuar muitos cálculos com a
vantagem de não haver erros desnecessários. 
 
Output 6.3.1: 
 
 
 
Através do “Output” podem ir, alé onada correlação, que esta 
m te pa corre tras
os conclu
ra medir o grau de 
m da já menci
edida é significan lação entre as 7 amos . 
69 
Conclusão 
CONCLUSÃO 
Ap ação, dos v odos para a esta o paramétric 
de dois softwares de aplicação nos vários métodos, d várias conclusões. 
Estas conclusões são ap a e su
conter os diferentes mé métod quer d
(Tabelas), q tiliz ç nas á c
características para ca ar. 
Quadro 1: Caso de uma am
Processo de 
Resolução: 
 
ós esta explan ários mét tística nã a, com abordagem
po emos tirar
m formato de quadro re
os de resolução, 
resentadas de seguid
todos nas linhas e os 
mo. Cada quadro irá 
o método tradicional 
uer a u a ão do computador, colunas. O quadro ir onter as principais 
da método em particul
ostra 
Tabelas SPSS® Mathematica® 
Teste da Binomial ? Fornece dados em 
relação à amostra. 
? 
apr m 
maior n.º de casas 
decimais. 
? Nem sempre é 
possível determinar 
o valor exacto de p; 
? Apenas para 
pequenas amostras; 
? Recorre-se à tabela 
A. 
? Valor de p com 
precisão e rapidez 
Pode-se utilizar
para grandes 
amostras; 
? O valor de p é 
esentado co
Qu
para uma 
amostra 
?
v 
temo alo; 
? Utiliza-se a tabela C.
infor este 
(ex.: valor esperado, 
graus de liberdade). 
 
? 
com exactidão. 
i-Quadrado Não calculamos o alor de p, apenas
s um interv
? Calcula um valor 
assimptótico; 
? Dá-nos algumas 
mações do t Dá o valor de p
Kolmogorov-
Smirnov para 
uma amostra 
? Não calculamos o 
valor de p, apenas 
temos um intervalo; 
? Utiliza-se a tabela 
E; 
? Dá-nos a dimensão 
da amostra, as 
diferenças máximas; 
? Calcula o valor de p 
assimptótico. 
Não foi possível 
conseguir um 
procedimento que 
fizesse o teste. 
Iterações para 
uma amostra 
? Não calculamos o 
valor de p, apenas 
temos um intervalo 
das iterações; 
? Utiliza-se a tabela 
F. 
? Dá-nos o valor de r, 
e da probabilidade 
assimptótica. 
 
? Após a conversão 
para zeros e uns, 
calcula a 
probabilidade e o 
número de iterações.
 
 
 
 
 
 
70
Conclusão 
 
Quadro 2: Caso de duas amostras s 
Processo de 
Resolução: SPSS® Mathematica® 
relacionada
Tabelas 
Teste dos sinais 
?
po
o valo
? S
m
? R
is
p
? Fornec
rela
empa
positivos e negativos.
 U
distr
par
? O v
pre
n.º de casas decimais.
 Nem sempre é 
ssível determinar 
r exacto de p; 
ó para dimensões 
enores que 25; 
ecorre-se à tabela 
D. 
d
? Utiliza a 
tribuição Binomial 
ara o cálculo da 
probabilidade 
e dados em 
ção ao teste: 
tes, sinais 
? tiliza também a 
ibuição binomial 
a o cálculo de p; 
alor de p é o mais 
ciso com maior 
Teste de 
McNemar 
? É empregue a 
f
dá-
que
é c
val
? Nã
? Calcula um valor 
distr
? O calculo de p é 
pr
pm
[]
órmula 2.2.1 que 
nos o resultado 
, posteriormente, 
omparado com 
ores da tabela C; 
o temos o cálculo 
de p. 
assimptótico, 
utilizando a 
ibuição Binomial.
 
n
feito através de 
ocedimento 
BinomialPValue
, o mesmo da 
Binomial. 
Teste de 
Wilcoxon 
? 
co
d
os 
tabela G; 
 O c
as
b
n
? 
Não calculamos o 
valor de p, apenas 
mparamos o valor 
e T calculado com 
tabelados na 
? álculo do valor 
simptótico de p é 
aseado nos números 
egativos. 
Não foi possível 
conseguir um 
procedimento. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71 
Conclusão 
Quadro 3: Caso de duas amostras independentes 
Processo de Resolução: Tabelas SPSS® Mathematica® 
Teste de Wald-
 Wolfowitz
? Recorre-se à tabela
F, caso as dimensões
não superar 20, neste
aso não se calcula
valor da 
 
 
 
c o 
 
 
a 
c
Não foi possível 
probabilidade, 
apenas compara-se o
número de iterações.
Caso contrário, 
recorre-se à tabel
A. 
? Fornece o número 
 mínimo de iterações e
o número máximo, 
alculando para cada 
um deles a 
probabilidade 
associada. 
conseguir um 
procedimento que 
fizesse o teste. 
Teste U de 
Mann-Whitney 
? C or 
à 
, 
 
abela K e J. 
? e 
U r 
exacto. 
?
probabilidade com 
maior número de 
casas decimais. 
alculamos o val
de U recorrendo 
fórmula 3.2.1, que
posteriormente, é 
comparado com os 
valores apresentados
Calcula o valor d
 e o valor de p, que
assimptótico, quer 
 Calcula o valor 
aproximado da 
na t
Teste de Moses para 
reacções extremas 
Não é preciso tabelas, ? Dá-nos a dimensão d , as 
diferenças máximas; 
a . 
 
l, 
ma em 
de não haver erros; 
apenas recorre-se à 
fórmula 3.3.2 para o 
cálculo de p; 
a amostra
? Calcula o valor de p 
ssimptótico
? O processo é o
mesmo do manua
s com a vantag
? Mais rápido. 
Qui-Quadrado duas 
amostras 
? o 
va nas 
? r 
aproximado da 
 
? 
1. S
2. C
Yates; 
3. C
Hab
Mas, só para tabela 
2x2. 
independentes 
 Não calculamos
lor de p, ape
temos um intervalo; 
? Utiliza-se a tabela C.
Calcula o valo
probabilidade
associada. 
 
Calcula o valor de
p de três modos: 
em correcção; 
orrecção de 
orrecção de 
er. 
 
 
 
 
 
 
 
 
 
 
 
72 
Conclusão 
Quadro 4: Caso de k amostras 
Processo de 
Resolução: Tabelas SPSS® Mathematica® 
T
tre um teste exacto e 
 teste assimptótico; 
? Igual ao SPSS®, mas 
com maior precisão. 
este Q de Cochran 
(Amostras 
? Recorre-se à tabela 
C, para o cálculo da 
probabilidade de 
? Podemos escolher 
en
um
relacionadas) ocorrência de Q. ? Calcula o valor de Q 
Teste Friedman 
(Amostras 
relacionadas) 
? Calculamos um 
intervalo para a 
probabilid
? Calcula o valor de p 
recorrendo à Qui- ? Do mesmo modo 
ade com o Quadrado com k-1 que o SPSS®, mas com maior precisão. auxílio da tabela N. graus de liberdade. 
Teste de Kruskal-
Wallis 
? Recorre-se à 
Tabela O para o 
cálculo da 
probabilidade; 
? Calcula um valor 
(Amostras 
independentes) 
? as amostras só 
podem ser no 
máximo dimensão 
não superior a cinco.
aproximado da 
probabilidade, 
recorrendo à Qui-
Quadrado com k-1 
graus de liberdade. 
? Igual ao SPSS, mas 
com maior rigor. 
Quadro 5: Medidas de Correlação 
Processo de 
Resolução: Tabelas SPSS® Mathematica® 
Coeficiente de 
correlação por postos 
de Kendall: τ 
 
? Recorre-se à tabela 
O, estando limitado a 
dimensões não 
superiores a 10; 
? Para o cálculo do 
coeficiente pode 
haver erro. 
? Calcula o coeficiente e 
também a 
probabilidade 
associada sob a 
hipótese nula. 
? Apenas dá o 
coeficiente; 
? O coeficiente é 
apresentado com 
maior número de 
casas decimais. 
Coeficiente de 
correlação por postos 
de Spearman ( ) 
? Recorre-se à tabela P 
para os valores 
críticos de
? Calcula o 
coeficiente, como 
também a sua 
probabilidade 
associada. 
? Apenas dá o 
coeficiente. 
Sr Sr . 
Coeficiente de 
concordância de 
Kendall (W) 
? Fácil cometer erros 
no calculo do 
coeficiente, 
principalmente em 
caso de empate. 
? Calcula o 
coeficiente e a 
probabilidade 
associada; 
? Apresenta a média 
dos postos para cada 
amostra; 
Não foi possível 
apresentar um 
procedimento que 
calcula-se o 
coeficiente. 
 
Se observarmos atentamente este resume, compreendemos que as tabelas estão inadequadas 
para amostras de grandes dimensões, a melhor solução para este problema será recorrer ao 
computador. 
73 
Conclusão 
O SPSS® é mais fácil de trabalha te de fácil utilização, tornando-
 uma ferramenta “popular”. O “output” de cada teste tem a vantagem de poder ser 
a
ue o SPSS® pode fazer no campo da Estatística. 
a
ão Paramétrica, pois poder-se-á desenvolver função para testar hipóteses utilizando os 
s procedimentos, aqui utilizados, apresentam resultados com mais precisão do que o 
S
r, pois apresenta um ambien
se
form tado ao gosto do utilizador. Este trabalho desenvolvido, é apenas uma ínfima parte do 
q
O M thematica® é uma ferramenta preciosa na Matemática e em particular para a Estatística 
N
diferentes métodos da Estatística. 
O
SPS ®, podendo escolher o número de casas decimais com a função N[]. A programação 
destes procedimentos encontra-se em anexo. 
74 
Bibliografia 
BIBLIOGRAFIA 
 Gibbons, Jean Dickinson e Chakraborti, Subhabrata, (1991) Nonparametric Statistical 
Inference, Third Edition, Dekker, Estados Unidos da América; 
 Siegel, Sidney, (1975) Estatística Não-Parametrica para as ciências do 
comportamento, McGraw-Hill, Brasil; 
 Daniel, W. W., Applied Nonparametric Statistic, Second Edition, PWS-Kent, Estados 
Unidos da América; 
 Wonnacott, Thomas H. e Wonnacott, Ronald J., Introductory Statistic, Fifth Edition; 
 Kendall, Maurice e Gibbons, Jean Dickinson, (1990) Rank Correlation Methods, Fifth 
Edition, Oxford University Press, Estados Unidos da América; 
 Kotz, Samuel e Johnson, Norman L., (1982) Encyclopedia of Statistical Sciences, 
Volume 2, Wiley-Interscience, Estados Unidos da América; 
 Mello, F. Galvão de Mello, Probabilidades e Estatística conceitos e métodos 
fundamentais, volume I e II, Escobar Editora; 
 
? Abell, Martha L., Braselton, James P. e Rafter, John A., (1999) Statistic with 
Mathematica®, Academic Press, Estados Unidos da América; 
 
? Sernadas, A. e Sernadas C., (1996) Programação em Mathematica, Secção de Ciências 
da Computação, Departamento de Matemática IST, Lisboa; 
 
? Carmo, José, (1998) Introdução à Programação em Mathematica, Secção de Ciências 
da Computação, Departamento de Matemática IST, Lisboa. 
 
 
 
?
 
?
 
?
 
?
 
?
 
?
 
?
75 
Bibliografia 
 
 
 
ANEXOS 
 
 
 
 
 
 
 
 
 
Estatística 
 Não Paramétrica 
 Testes de Hipóteses
e Medidas de Associação 
 
 
 
 
 
 
 
75 
Anexo 0 
Anexo 0 
 
No SPSS® é preciso pesar os dados para que se possa aplicar alguns dos métodos. Estes 
são: 
? Teste da Qui-Quadrado, quer para uma amostra, quer para duas amostras independentes, 
? Teste de Kolmogorov-Smirnov; 
? Teste de McNemar. 
 
Para pesar os dados é preciso realizar os seguintes passos: 
 
 
 
 
 
 
 
76 
Anexo I: Caso de uma amostra 
Anexo I: Caso de uma amostra 
 
I.1 T
? SP
este da Binomial: 
 
SS® 
 
 
 
? Mathematica® 
 
OffGeneralspell1; 
<< Statistics` DiscreteDistributions` upperPSum p0, s :=Modulek 
 bdistBinominalDistribution 
 upboundPDFbdists 
 onetai = CDFbdists 
 twotai=onetai 
 k=n; 
 whileAndPDFbdist k <= upbounds <> s 
twotai=ltwora+PDFbdist; k=k-1; 
 twotai=Mintwotai; 
 onetai, twotail; 
 
 
 
 
 
 
 
 
 
 
77 
Anexo I: Caso de uma amostra 
lowerPSum, p0, s :=Modulek, 
bdist=BinomialDistribution, p0; 
 upbound, 
tai= i+PDFbdistk; k=k+1; 
 
npmB
 
 
 
If pHat <= p0, pvals lowerPSum p0, s; 
Print “OneSidedPValue -> “, pvals1; 
 
I.2 Teste da Qui-quadrado ( ) de uma amostra 
 
? SPSS® 
 
 
 upboundPDFbdist; 
dists; onetai=l1-CDFb
 twotai=lonetai1; 
 k=0; 
 whilePDFbdistk <=
two ltwota
 Mintwotai, l1; 
 onetai, ltwotail 
ino PValue0, s := Modulebdist, pvmial al, spHat, 
bdist=binomialDistribution p0; 
Hat=s p n; 
If pHat <= p0, pvals upperPSum, p0, s; 
 
 
 Print “TwoSidedPValue -> “, pvals2 
 
2χ
 
 
 
 
 
 
78 
Anexo I: Caso de uma amostra 
? Mathematica® 
 
<< tatistics S ‘ContinuousDistributions’, 
QuiQuadrada1Amostra 
 Function Amostra; 
 Modulei, Ei, 
 i=1; 
 x=0; 
 Ei=NSumAmostraj, j, 1, LengtAmostra 
 LengtAmostra 
 Whilei <= LengtAmostra 
 x=x+Amostrai-Ei^2 Ei; 
 i = i+1 
 gl = LengtAmostra1; 
 Print “PValue”, 1-CDFChiSquareDistribution gl, x 
 
 
I.3 Teste de Kolmogorov-Smirnov para uma amostra 
 
? SPSS® 
 
 
 
 
 
 
 
 
 
79 
Anexo I: Caso de uma amostra 
I.4 Teste de i
?
 
terações de uma amostra 
 
 SPSS® 
 
 
? Mathematica® 
ffGeneral spell1; 
 
O
<< Statistics` NormalDistribution` 
<< Statistics` DataManipulation` 
ropValxs := If x!=medAppendTo newListx 
, m0 :=Module, 
If y < m0, 0, 1 
ndFirstOne dlist := Module, 
k=1; 
while listk != 1, k=k+1 
ndFirstZero k:=Module, 
k=1; 
While listk !=0, k=k+1; 
d
fy
 
fi
 
 
fi
 
 
 
 
 
80 
Anexo II: Caso de duas amostras relacionadas 
Anexo II: Caso duas amostras relacionadas 
 dos testes deste anexo tem o seguinte passo: 
 
Passo (*): 
 
 
 
A seguir à introdução dos dados qualquer um
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81 
Anexo II: Caso de duas amostras relacionadas 
II.1 
? SPSS® 
Teste dos Sinais 
 
 
 
 
Passo (*) 
 
 
 
? Mathematica® 
 
OffGeneralspell1; 
<< Statistics` DiscreteDistributions` 
Option spmSignTestFrequencies sided -> 2 
 
 
 
 
 
 
82 
Anexo II: Caso de duas amostras relacionadas 
Clean spmSignTestFrequencies 
npmSignTestFrequencies f1, f2, opts := Modules, n, tail, 
s=f1; 
 n=f1+f2; 
 tail=sided opts 
 Option spmSignTestFrequencies 
 If s <= n 2, 
 pval = N CDFBinomialDistribution 1, 2, s, 
 pval = 1-N CDFBinomialDistribution 1, 2, s; 
 Iftail == 2, pval = 2*pval; 
 Print “TitleSignTest”; 
 Print “Distribution “BinominalDistribution, n, “, 1 2 “; 
 Print tail “ – sided p-value -> “, pval; 
 
 
II.2 Teste dos McNemar 
 
? SPSS® 
 
 
 
 
 
 
 
 
Passo (*) 
 
 
 
 
83 
Anexo II: Caso de duas amostras relacionadas 
II.3 Teste 
 
? S
de Wilcoxon 
PSS® 
 
 
 
 
 
 
Passo (*) 
 
 
84 
Anexo III: Caso de duas amostras independentes 
Anexo III: Caso de duas amostras independentes 
 
ir à introdução dos dados qualquer um dos testes (excepto o teste da Qui-
Quadrado) do Anexo III tem o seguinte Passo: 
 
Passo (**): 
 
A segu
 
 
 
 
 
 
 
 
 
 
 
 
 
85 
Anexo III: Caso de duas amostras independentes 
III.1 Teste de Wald-Wolfowitz 
 
? SPSS® 
 
 
 
 
 
Na página seguinte: 
Passo (**) 
86 
Anexo III: Caso de duas amostras independentes 
 
 
 
 
 de U de Mann-Whitney 
 
? SPSS® 
 
III.2 Teste
 
 
 
 
 
Na página seguinte: 
 
Passo (**) 
87 
Anexo III: Caso de duas amostras independentes 
 
 
III.3 Teste de Moses para reacções extremas 
? SPSS® 
 
 
 
 
 
 
Passo (**) 
88 
Anexo III: Caso de duas amostras independentes 
 
 
 
III.4 Teste da Qui-quadrado ( ) para duas amostras independentes 
 
? SPSS® 
 
 
2χ
 
 
 
 
89 
Anexo III: Caso de duas amostras independentes 
 
 
 
 
 
 
90 
Anexo IV: Caso de k amostras relacionadas 
Anexos IV: Caso de k amostras relacionadas 
Após a introdução dos dados, é feito o seguinte passo, comum a todos: 
asso (***): 
 
 
 
P
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91 
Anexo IV: Caso de k amostras relacionadas 
IV.1 Teste de Q de Cochran 
 
 
? SPSS® 
 
 
 
 
 
 
Passo (***) 
 
 
IV.2 Teste de Friedman 
 
? SPSS® 
 
 
 
 
 
Passo (***) 
92 
Anexo IV: Caso de k amostras relacionadas 
 
 
 
 
93 
Anexo V: Caso de k amostras independentes 
Anexo V: Caso de k amostras independentes 
 
V
 
 
.1 Teste de Kruskal-Wallis 
? SPSS® 
 
 
 
 
94 
Anexo VI: Medidas de Correlação 
Anexo VI: Medidas de Correlação. 
 
As medidas de correlação estão por defeito no Mathematica® portanto neste 
anexo só apresento os passos para o SPSS®: 
 
VI.1 Coeficiente de correlação por postos de Kendall: τ 
 
 
 
 
 
 
 
 
 
 
95 
Anexo VI: Medidas de Correlação 
VI.2 Coeficiente de correlação por postos de Spearman: Sr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96 
Anexo VI: Medidas de Correlação 
 
VI.3 Coeficiente de concordância de Kendall: 
 
W 
 
 
 
 
97 
 
 
 
 
 
 
 
 
 
 
 
 
 
A A
 
 
 
 
 
 
 
 
 
 
E t c
 o ra é a
 tes óte edi Ass 
 
T BEL S 
sta ísti a 
Nã Pa m tric 
 Tes de Hip ses e M das de ociação
75 
Tabelas 
Tabela A 
Probabilidades associadas a valores tão ext s observados de z na Distribuição Normal 
O corpo da tabela dá as probabilidades unilaterais de z sob H0. A coluna da margem esquerda dá os valores de z 
com uma décima, e a linha superio emplo, a probabilidade 
tera u
remos quanto os valore
r dá os valores com duas décimas. Assim, por ex
≥zunila l p de 11,0 o 11,0−≤ é 45,0 62=p 
 
z 0,00 0,01 0,02 0,03 4 0 0,08 0,09 0,0 0,05 0,06 ,07 
0,0 0,5000 0, 0, 4 0 81 0,4641 4960 0,4920 0,4880 0,4840 0,4801 4761 0, 721 ,46
0,1 0,4602 0, 0, 4443 0,4404 0,4364 0,4325 0 86 0,4247 4562 0,4522 4483 0, ,42
0,2 0,4207 68 9 90 0,3 97 0,3859 0,41 0,412 0,40 0,4052 0,4013 0,3974 936 0,38
0,3 0,3821 83 5 07 0, 0,35 20 0,3483 0,37 0,374 0,37 0,3669 0,3632 3594 57 0,35
0,4 0,3446 09 2 36 0, 0,31 56 0,3121 0,34 0,337 0,33 0,3300 0,3264 3228 92 0,31
 
0,5 0,3085 50 5 81 0, 0,284 10 0,2776 0,30 0,301 0,29 0,2946 0,2912 2877 3 0,28
0,6 0,2743 09 6 43 0, 0,251 83 0,2451 0,27 0,267 0,26 0,2611 0,2578 2546 4 0,24
0,7 0,2420 0, 0, 2296 0,2266 0,2236 0,2206 0 77 0,2148 2389 0,2358 2327 0, ,21
0,8 0,2119 0, ,192 94 0,1867 0,2090 0,2061 0,2033 0,2005 0,1977 1949 0 2 0,18
0,9 0,1841 14 8 62 0, 0,166 35 0,1611 0,18 0,178 0,17 0,1736 0,1711 1685 0 0,16
 
1,0 0,1587 62 9 15 0, 0,142 01 0,1379 0,15 0,153
0,15 0,1492 0,1469 1446 3 0,14
1,1 0,1357 35 4 92 0, 0,121 90 0,1170 0,13 0,131 0,12 0,1271 0,1251 1230 0 0,11
1,2 0,1151 31 2 93 0, 0,102 03 0,0985 0,11 0,111 0,10 0,1075 0,1056 1038 0 0,10
1,3 0,0968 51 4 18 0, 0,085 38 0,0823 0,09 0,093 0,09 0,0901 0,0885 0869 3 0,08
1,4 0,0808 0, 0, 0749 0,0735 0,0721 0,0708 0 94 0,0681 0793 0,0778 0764 0, ,06
 
1,5 0,0668 55 3 30 0, 0,058 71 0,0559 0,06 0,064 0,06 0,0618 0,0606 0594 2 0,05
1,6 0,0548 37 6 16 0, 0,047 65 0,0455 0,05 0,052 0,05 0,0505 0,0495 0485 5 0,04
1,7 0,0446 36 7 18 0, 0,038 75 0,0367 0,04 0,042 0,04 0,0409 0,0401 0392 4 0,03
1,8 0,0359 51 4 36 0, 0,030 01 0,0294 0,03 0,034 0,03 0,0329 0,0322 0314 7 0,03
1,9 0,0287 81 4 68 0, 0,024 39 0,0233 0,02 0,027 0,02 0,0262 0,0256 0250 4 0,02
 
2,0 0,0228 0, 0, 0207 0,0202 0,0197 0,0192 0 88 0,0183 0222 0,0217 0212 0, ,01
2,1 0,0179 74 0 66 0, 0,015 46 0,0143 0,01 0,017 0,01 0,0162 0,0158 0154 0 0,01
2,2 0,0139 36 2 29 0, 0,011 13 0,0110 0,01 0,013 0,01 0,0125 0,0122 0119 6 0,01
2,3 0,0107 04 2 99 0, 0,008 87 0,0084 0,01 0,010 0,00 0,0096 0,0094 0091 9 0,00
2,4 0,0082 80 8 75 0, 0,006 66 0,0064 0,00 0,007 0,00 0,0073 0,0071 0069 8 0,00
 
2,5 0,0062 60 9 57 0, 0,005 49 0,0048 0,00 0,005 0,00 0,0055 0,0054 0052 1 0,00
2,6 0,0047 0, 0, 0038 37 0,0036 0045 0,0044 0,0043 0,0041 0,0040 0039 0, 0,00
2,7 0,0035 0, 0, 0028 27 0,0026 0034 0,0033 0,0032 0,0031 0,0030 0029 0, 0,00
2,8 0,0026 25 4 23 0, 0,002 20 0,0019 0,00 0,002 0,00 0,0023 0,0022 0021 1 0,00
2,9 0,0019 18 8 17 0, 0,001 14 0,0014 0,00 0,001 0,00 0,0016 0,0016 0015 5 0,00
 
3,0 0,0013 13 3 12 0, 0,001 10 0,0010 0,00 0,001 0,00 0,0012 0,0011 0011 1 0,00
3,1 0,0010 09 9 09 0, 0,000 07 0,0007 0,00 0,000 0,00 0,0008 0,0008 0008 8 0,00
3,2 0,0007 
3,3 0,0005 
3,4 0,0003 
 
3,5 0,00023 
3,6 0,00016 
3,7 0,00011 
3,8 0,00007 
3,9 0,00005 
 
4,0 0,00003 
 
 
76 
Tabelas 
Tabela B 
Valores críticos de t. 
 
ân o teNível de signific cia para ste unilateral 
0, 01 05 1 0,05 0,025 0, 0,005 0,00
Nív icâ est ateel de sig fni ncia para t o e bil ral 
gl 
 1 0,2 0,1 0,05 0,02 0,01 0,00
 
1 8 3 63,6 53,07 6,314 12,706 1,821 56 636, 78 
2 6 9,9 61,88 2,920 4,303 6,965 25 31, 00 
3 8 5,81,63 2,353 3,182 4,541 41 12,924 
4 1,533 2, 2 2,77 7 4,6 8,6 13 6 3,74 04 10
5 6 4,01,47 2,015 2,571 3,365 32 6,869 
 
6 0 1,44 1,943 2,447 3,143 3,707 5,959 
7 5 1,41 1,895 2,365 2,998 3,499 5,408 
8 397 31, 1,860 2,306 2,896 3, 55 5,041 
9 3 1,38 1,833 2,262 2,821 3,250 4,781 
10 2 1,37 1,812 2,228 2,764 3,169 4,587 
 
11 3 1,36 1,796 2,201 2,718 3,106 4,437 
12 6 1,35 1,782 2,179 2,681 3,055 4,318 
13 350 01, 1,771 2,160 2,650 3, 12 4,221 
14 5 1,34 1,761 2,145 2,624 2,977 4,140 
15 11,34 1,753 2,131 2,602 2,947 4,073 
 
16 71,33 1,746 2,120 2,583 2,921 4,015 
17 1,333 1, 0 2,11 7 2,8 3,9 74 0 2,56 98 65
18 01,33 1,734 2,101 2,552 2,878 3,922 
19 81,32 1,729 2,093 2,539 2,861 3,883 
20 51,32 1,725 2,086 2,528 2,845 3,850 
 
21 31,32 1,721 2,080 2,518 2,831 3,819 
22 11,32 1,717 2,074 2,508 2,819 3,792 
23 91,31 1,714 2,069 2,500 2,807 3,768 
24 81,31 1,711 2,064 2,492 2,797 3,745 
25 61,31 1,708 2,060 2,485 2,787 3,725 
 
26 5 706 2 6 2,4 2,779 ,707 1,31 1, ,05 79 3 
27 1,314 1,703 2,052 2,473 2,771 3,689 
28 1,313 1,701 2,048 2,467 2,763 3,674 
29 1,311 1,699 2,045 2,462 2,756 3,660 
30 1,310 1,697 2,042 2,457 2,750 3,646 
 
40 1,303 1,684 2,021 2,423 2,704 3,551 
60 1,296 1,671 2,000 2,390 2,660 3,460 
120 1,289 1,658 1,980 2,358 2,617 3,373 
∞ 1,282 1,645 1,960 2,326 2,576 3,290 
 
77 
Tabelas 
Tabela C 
Valores críticos de Qui-Quadrado 
 
Pro adrado babilidade, sob H , de ≥2χ qui-qu0gl 
0, 0, 0,95 0, 80 0,70 50 0, 20 0,10 0,05 0, 01 0,001 99 98 90 0, 0, 30 0, 02 0,
 
1 016 00 3 3 0, 0 4 15 45 1, 4 1 84 5 3 ,83 0,00 0, 06 0,00 9 016 ,06 0, 0, 07 1,6 2,7 3, ,41 6,6 10
2 0, 04 10 0,2 0 5 71 1,39 2, 3 2 ,61 5,99 7, ,82 02 0, 0, 1 ,4 0, 41 ,2 4 82 9,21 13
3 0,1 42 2,37 3,6 4 25 7,81 9, 1 ,34 6,27 0,11 8 0,35 0,58 1,01 1, 6 ,64 6, 84 1 1
4 0,4 9 36 4,8 5 78 9,49 11 7 13,28 8,47 0,30 3 0,71 1,06 1,65 2,1 3, 8 ,99 7, ,6 1
5 0,55 0,75 1,15 1,61 2,34 3,00 4,35 6,06 7,29 9,24 11,07 13,39 15,09 20,51 
 
6 0,87 1,13 1,64 2,20 3,07 3,83 5,35 7,23 8,56 10,64 12,59 15,03 16,81 22,46 
7 1,24 1,56 2,17 2,83 3,82 4,67 6,35 8,38 9,80 12,02 14,07 16,62 18,48 24,32 
8 1,65 2,03 2,73 3,49 4,59 5,53 7,34 9,52 11,03 13,36 15,51 18,17 20,09 26,12 
9 2,09 2,53 3,33 4,17 5,38 6,39 8,34 10,66 12,24 14,68 16,92 19,68 21,67 27,88 
10 2,56 3,06 3,94 4,87 6,18 7,27 9,34 11,78 13,44 15,99 18,31 21,16 23,21 29,59 
 
11 3,05 3,61 4,57 5,58 6,99 8,15 10,34 12,90 14,63 17,28 19,68 22,62 24,73 31,26 
12 3,57 4,18 5,23 6,30 7,81 9,03 11,34 14,01 15,81 18,55 21,03 24,05 26,22 32,91 
13 4,11 4,77 5,89 7,04 8,63 9,93 12,34 15,12 16,98 19,81 22,36 25,47 27,69 34,53 
14 4,66 5,37 6,57 7,79 9,47 10,82 13,34 16,22 18,15 21,06 23,68 26,87 29,14 36,12 
15 5,23 5,98 7,26 8,55 10,31 11,72 14,34 17,32 19,31 22,31 25,00 28,26 30,58 37,70 
 
16 5,81 6,61 7,96 9,31 11,15 12,62 15,34 18,42 20,47 23,54 26,30 29,63 32,00 39,25 
17 6,41 7,25 8,67 10,09 12,00 13,53 16,34 19,51 21,61 24,77 27,59 31,00 33,41 40,79 
18 7,01 7,91 9,39 10,86 12,86 14,44 17,34 20,60 22,76 25,99 28,87 32,35 34,81 42,31 
19 7,63 8,57 10,12 11,65 13,72 15,35 18,34 21,69 23,90 27,20 30,14 33,69 36,19 43,82 
20 8,26 9,24 10,85 12,44 14,58 16,27 19,34 22,77 25,04 28,41 31,41 35,02 37,57 45,31 
 
21 8,90 9,91 11,59 13,24 15,44 17,18 20,34 23,86 26,17 29,62 32,67 36,34 38,93 46,80 
22 9,54 10,60 12,34 14,04 16,31 18,10 21,34 24,94 27,30 30,81 33,92 37,66 40,29 48,27 
23 10,20 11,29 13,09 14,85 17,19 19,02 22,34 26,02 28,43 32,01 35,17 38,97 41,64 49,73 
24 10,86 11,99 13,85 15,66 18,06 19,94 23,34 27,10 29,55 33,20 36,42 40,27 42,98 51,18 
25 11,52 12,70 14,61 16,47 18,94 20,87 24,34 28,17 30,68 34,38 37,65 41,57 44,31 52,62 
 
26 12,20 13,41 15,38 17,29 19,82 21,79 25,34 29,25 31,79 35,56 38,89 42,86 45,64 54,05 
27 12,88 14,13 16,15 18,11 20,70 22,72 26,34 30,32 32,91 36,74 40,11 44,14 46,96 55,48 
28 13,56 14,85 16,93 18,94 21,59 23,65 27,34 31,39 34,03 37,92 41,34 45,42 48,28 56,89 
29 14,26 15,57 17,71 19,77 22,48 24,58 28,34 32,46 35,14 39,09 42,56 46,69 49,59 58,30 
30 14,95 16,31 18,49 20,60 23,36 25,51 29,34 33,53 36,25 40,26 43,77 47,96 50,89 59,70 
 
 
78 
Tabelas 
Tabela D 
Probabilidades associadas a valores tão pequenas quanto os valores observados de x no Teste Binomial. 
O corpo da tabela dá as probabilidades unilaterais de z, sob , do teste binomial, quando P = Q = ½. 
Omitiram-se as vírgulas decimais nos p’s. 
 
 x 
 0H
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
N 
 5 031 188 500 812 969 * 
 6 016 109 344 656 891 984 * 
 7 008 062 227 500 773 938 992 * 
 8 004 035 145 363 637 855 965 996 * 
 9 002 020 090 254 500 746 910 980 998 * 
 10 001 011 055 172 377 623 828 945 989 999 * 
 11 006 033 113 274 500 726 887 967 994 *
* 
 12 003 019 073 194 387 613 806 927 981 997 * * 
 13 002 011 046 133 291 500 709 867 954 989 998 * * 
 14 001 006 029 090 212 395 605 788 910 971 994 999 * * 
 15 004 018 059 151 304 500 696 849 941 982 996 * * * 
 16 002 011 038 105 227 402 598 773 895 962 989 998 * * 
 17 001 006 025 072 166 315 500 685 834 928 975 994 * 999
 18 001 004 015 048 119 240 407 593 760 881 952 985 999996
 19 002 010 032 084 180 324 500 676 820 916 968 990 998
 20 001 006 021 058 132 252 412 588 748 868 942 979 994
 21 001 004 013 039 095 192 332 500 668 808 905 961 987
 22 002 008 026 067 143 262 416 584 738 857 933 974
 23 001 005 017 047 105 202 339 500 661 798 895 953
 24 001 003 011 032 076 154 271 419 581 729 846 924
 25 002 007 022 054 115 212 345 500 655 788 885
 
* 1,0 ou aproximadamente 1,0 
 
79 
Tabelas 
 
Probabilidades associadas a valores tão pequenas quanto os valores observados de x no Teste Binomial. 
O corpo da tabela dá as probabilidades unilaterais de z, sob , do teste binomial, quando P = Q = ½. 
Omitiram-se as vírgulas decimais nos p’s. 
 
 x 
 0H
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
N 
 5 031 188 500 812 969 * 
 6 016 109 344 656 891 984 * 
 7 008 062 227 500 773 938 992 * 
 8 004 035 145 363 637 855 965 996 * 
 9 002 020 090 254 500 746 910 980 998 * 
 10 001 011 055 172 377 623 828 945 989 999 * 
 11 006 033 113 274 500 726 887 967 994 * * 
 12 003 019 073 194 387 613 806 927 981 997 * * 
 13 002 011 046 133 291 500 709 867 954 989 998 * * 
 14 001 006 029 090 212 395 605 788 910 971 994 999 * * 
 15 004 018 059 151 304 500 696 849 941 982 996 * * * 
 16 002 011 038 105 227 402 598 773 895 962 989 998 * * 
 17 001 006 025 072 166 315 500 685 834 928 975 994 999 * 
 18 001 004 015 048 119 240 407 593 760 881 952 985 996 999
 19 002 010 032 084 180 324 500 676 820 916 968 990 998
 20 001 006 021 058 132 252 412 588 748 868 942 979 994
 21 001 004 013 039 095 192 332 500 668 808 905 961 987
 22 002 008 026 067 143 262 416 584 738 857 933 974
 23 001 005 017 047 105 202 339 500 661 798 895 953
 24 001 003 011 032 076 154 271 419 581 729 846 924
 25 002 007 022 054 115 212 345 500 655 788 885
 
* 1,0 ou aproximadamente 1,0 
 
80 
Tabelas 
Tabela E 
Valores críticos de D no Teste de Kolmogorov-Smirnov para uma amostra. 
 
 
Nível de Significância para 
)()(máx 0 XSXFD N−= 
 
 
 
 
 
 
N 
 
 
0,20 0,15 0,10 0,05 0,01 
 
1 0,900 0,925 0,950 0,975 0,995 
2 0,684 0,726 0,776 0,842 0,929 
3 0,565 0,597 0,642 0,708 0,828 
4 0,494 0,525 0,564 0,624 0,733 
5 0,446 0,474 0,510 0,565 0,669 
 
6 0,410 0,436 0,470 0,521 0,618 
7 0,381 0,405 0,438 0,486 0,577 
8 0,358 0,381 0,411 0,457 0,543 
9 0,339 0,360 0,388 0,432 0,514 
10 0,332 0,342 0,368 0,410 0,490 
 
11 0,307 0,326 0,352 0,391 0,468 
12 0,295 0,313 0,338 0,375 0,450 
13 0,284 0,302 0,325 0,361 0,433 
14 0,274 0,292 0,314 0,349 0,418 
15 0,266 0,283 0,304 0,338 0,404 
 
16 0,258 0,274 0,295 0,328 0,392 
17 0,250 0,266 0,286 0,318 0,381 
18 0,244 0,259 0,278 0,309 0,371 
19 0,237 0,252 0,272 0,301 0,363 
20 0,231 0,246 0,264 0,294 0,356 
 
25 0,21 0,22 0,24 0,27 0,32 
30 0,19 0,20 0,22 0,24 0,29 
35 0,18 0,19 0,21 0,23 0,27 
 
Mais de 35 
 N
07,1 
N
14,1 
N
22,1 
N
36,1 
N
63,0 
 
81 
Tabelas 
82 
Tabela F 
Valores críticos de r no teste de Iterações 
O corpo das tabelas FI e FII contém diversos valores críticos de r para vários valores de n1 e n2. Para o teste de 
iterações de uma amostra, qualquer valor de r não superior ao exibido na tabela FI ou não inferior ao exibido na 
tabela FII é significativo ao nível 0,05. Para o teste de iterações de Wald-Wolfowitz qualquer valor de r não 
superior ao exibido na tábua FI é significativo ao nível 0,05. 
 
 
Tabela FI
 
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 
 
 2 2 2 2 2 2 2 2 2 2 
 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 
 4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 
 5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 
 6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 
 7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 
 8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7 
 9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 
 10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9 
 11 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9 
 12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
 13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
 14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11
 15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12
 16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12
 17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13
 18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13
 19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13
 20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabelas 
83 
 
 
 
 
 
Tabela FII
 
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 
 2 
 3 
 4 9 9 
 5 9 10 10 11 11 
 6 9 10 11 12 12 13 13 13 13 
 7 11 12 13 13 14 14 14 14 15 15 15 
 8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17 
 9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 
 10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20 
 11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21 
 12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22 
 13 15 16 17 18 19 19 20 20 21 21 22 22 23 23 
 14 15 16 17 18 19 20 20 21 22 22 23 23 23 24 
 15 15 16 18 18 19 20 21 22 22 23 23 24 24 25 
 16 17 18 19 20 21 21 22 23 23 24 25 25 25 
 17 17 18 19 20 21 22 23 23 24 25 25 26 26 
 18 17 18 19 20 21 22 23 24 25 25 26 26 27 
 19 17 18 20 21 22 23 23 24 25 26 26 27 27 
 20 17 18 20 21 22 23 24 25 25 26 27 27 28 
 
 
Tabelas 
84 
Tabela G 
Valores críticos de T no teste de Wilcoxon 
 
 Nível de significância para teste unilateral 
N 0,025 0,01 0,005 
 Nível de significância para teste bilateral 
 0,05 0,02 0,01 
 
6 0 
7 2 0 
8 4 2 0 
9 6 3 2 
10 8 5 3 
 
11 11 7 5 
12 14 10 7 
13 17 13 10 
14 21 16 13 
15 25 20 16 
 
16 30 24 20 
17 35 28 23 
18 40 33 28 
19 46 38 32 
20 52 43 38 
 
21 59 49 43 
22 66 56 49 
23 73 62 55 
24 81 69 61 
25 89 77 68 
 
 
Tabelas 
85 
Tabela J 
Probabilidades associadas a valores tão pequenos quanto os valores observados de U no 
teste de Mann-Whitney 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabelas 
 
Probabilidades associadas a valores tão pequenos quanto os valores observados de U no 
teste de Mann-Whitney (continuação) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86 
Tabelas 
 
 
Probabilidades associadas a valores tão pequenos quanto os valores observados de U no 
teste de Mann-Whitney (continuação) 
 
 
 
 
 
 
 
87
Tabelas 
88 
Tabela K 
Valores críticos de U no teste de Mann-Whitney 
 
 
 
 
 
 
 
 
 
 
Tabela KI. Valores críticos para um teste unilateral 
com α=0,001 e um teste bilateral com α=0,002 
Tabela KII. Valores críticos para um teste unilateral 
com α=0,01 e um teste bilateral com α=0,02 
Tabela KIII. Valores críticos para um teste unilateral 
com α=0,025 e um teste bilateral com α=0,05 
Tabela KIV. Valores críticos para um teste unilateral 
com α=0,05 e um teste bilateral com α=0,1 
Tabelas 
Tabela N 
Probabilidades associadas a valores tão grandes quanto os valores observados de χr2 no teste de Friedman 
 
 
 
 
 
89 
Tabelas 
 
Probabilidades associadas a valores tão grandes quanto os valores observados de χr2 no teste de Friedman 
(continuação) para k = 4 
 
 
 
90 
Tabelas 
Tabela O 
Probabilidades associadas a valores tão grandes quanto os valores observados de H no 
teste de Kruskal-Wallis. 
 
 
91 
Tabelas 
 
Probabilidades associadas a valores tão grandes quanto os valores observados de H no 
teste de Kruskal-Wallis. 
 
 
92 
Tabelas 
93 
Tabela P 
Valores Críticos de rS, coeficiente de correlação de Spearman 
 
 
 Nível de significância
N (unilateral) 
 0,05 0,01 
 
4 1,000 
5 0,900 1,000 
6 0,829 0,943 
7 0,714 0,893 
8 0,643 0,833 
9 0,600 0,783 
10 0,564 0,746 
12 0,506 0,712 
14 0,456 0,645 
16 0,425 0,601 
18 0,399 0,564 
20 0,377 0,534 
22 0,359 0,508 
24 0,343 0,485 
26 0,329 0,465 
28 0,317 0,448 
30 0,306 0,432 
 
Tabelas 
94 
Tabela Q 
Probabilidades associadas a valores tão grandes quanto os valores observados de S no 
coeficiente de correlação de Kendall 
 
S Valores de N S Valores de N 
 4 5 8 9 6 7 10 
 
0 0,625 0,592 0,548 0,540 1 0,500 0,500 0,500 
2 0,375 0,408 0,452 0,460 3 0,360 0,386 0,431 
4 0,167 0,242 0,360 0,381 5 0,235 0,281 0,364 
6 0,042 0,117 0,274 0,306 7 0,068 0,191 0,300 
8 0,042 0,199 0,238 9 0,028 0,119 0,242 
10 0,0083 0,138 0,179 11 0,0083 0,068 0,190 
12 0,089 0,130 13 0,0014 0,035 0,146 
14 0,054 0,090 15 0,015 0,108 
16 0,031 0,060 17 0,0054 0,078 
18 0,016 0,038 19 0,0014 0,054 
20 0,0071 0,022 21 0,00020 0,036 
22 0,0028 0,012 23 0,023 
24 0,00087 0,0063 25 0,014 
26 0,00019 0,0029 27 0,0083 
28 0,000025 0,00012 29 0,0046 
30 0,00043 31 0,0023 
32 0,000012 33 0,0011 
34 0,000025 35 0,00047 
36 0,0000028 37 0,00018 
 39 0,000058 
 41 0,000015 
 43 0,0000028 
 45 0,00000028 
 
 
Tabelas 
95 
Tabela R 
Valores críticos de s no coeficiente de concordância de Kendall 
 
 Valores adicionais 
k N para N=3 
 3* 4 5 6 7 k s 
 Valores ao nível de significância de 0,05 
 
3 64,4 103,9 157,3 9 54,0
4 49,5 88,4 143,3 217,0 12 71,9
5 62,6 112,3 182,4 276,2 14 83,8
6 75,7 136,1 221,4 335,2 16 95,8
8 48,1 101,7 183,7 299,0 453,1 18 107,7
10 60,0 127,8 231,2 376,7 571,0 
15 89,8 192,9 349,8 570,5 864,9 
20 119,7 258,0 468,5 764,4 1 158,7 
 
 Valores ao nível de significância de 0,01 
 
3 75,6 122,8 185,6 9 75,9
4 61,4 109,3 176,2 265,0 12 103,5
5 80,5 142,8 229,4 343,8 16 121,9
6 99,5 176,1 282,4 422,6 18 140,2
8 66,8 137,4 242,7 388,3 579,9 158,6
10 85,1 175,3 309,1 494,0 737,0 
15 131,0 269,8 475,2 758,2 1 129,5 
20 177,0 364,2 641,2 1 022,2 1 521,9 
 
* Observe os valores adicionais para N=3 constantes à direita da tabela 
 
 
 
 
 
DEPARTAMENTO DE MATEMÁTICA 
Secção de Estatística e Investigação Operacional 
Filipe Gago da Câmara © 
 
Câmara, Filipe Gago (2001) “Estatística Não Paramétrica: 
Testes de hipóteses e medidas de associação” Monografias da 
SEIO. Depto. Matemática da Univ. dos Açores: Ponta 
Delgada, www.uac.pt/~amendes (ID 1.431) 
O trabalho apresentado é da exclusiva responsabilidade do aluno que o assina. O Departamento 
de Matemática e a Universidade dos Açores não se responsabilizam por eventuais erros 
existentes no mesmo. 
Os textos podem ser descarregados livremente, impressos e utilizados para ensino ou estudo 
dos temas a que se referem. No entanto, não podem ser copiados ou incluídos noutros trabalhos 
académicos ou de qualquer outra natureza, sem o consentimento do autor e a devida referência 
completa. Para autorização de cópia parcial ou integral, utilize o endereço de correio electrónico: 
HTUseio@notes.uac.pt UTH 
	Teste de Hipóteses
	Introdução
	Capitulo 1: Caso de uma amostra
	1.1 Teste da Binomial
	1.2 Teste do Qui-Quadrado () para uma amostra
	1.3 Teste de Kolmogorov-Smirnov
	1.4. Teste de Iterações de Uma Amostra
	Capítulo 2: Caso de duas�amostras relacionadas
	2.1 Teste dos Sinais
	2.2 Teste de McNemar
	2.3 Teste de Wilcoxon
	Capitulo 3: Caso de duas�amostras independentes
	3.1 Teste de Iterações de Wald-Wolfowitz
	3.2 Teste U de Mann-Whitney
	3.3 Teste de Moses para reacções extremas
	3.4 Teste da Qui-Quadrado () para duas amostras independente
	Capítulo 4: Caso de k�amostras relacionadas
	4.1 Teste de Cochran
	4.2 Teste de Friedman
	Capítulo 5: Caso de k�amostras independentes
	5.1 Teste de Kruskal-Wallis
	Capitulo 6: Medidas de Correlação
	6.1 Coeficiente de Correlação por postos de Kendall:
	6.2 Coeficiente de Correlação por postos de Spearman:
	6.3 Coeficiente de Concordância de Kendall:
	Conclusão
	Bibliografia
	Anexos
	Anexo 0
	Anexo I: Caso de uma amostra
	I.1 Teste da Binomial:
	I.2 Teste da Qui-quadrado () de uma amostra
	I.3 Teste de Kolmogorov-Smirnov para uma amostra
	I.4 Teste de iterações de uma amostra
	Anexo II: Caso duas amostras relacionadas
	II.1 Teste dos Sinais
	II.2 Teste dos McNemar
	II.3 Teste de Wilcoxon
	Anexo III: Caso de duas amostras independentes
	III.1 Teste de Wald-Wolfowitz
	III.2 Teste de U de Mann-Whitney
	III.3 Teste de Moses para reacções extremas
	III.4 Teste da Qui-quadrado () para duas amostras independen
	Anexos IV: Caso de k amostras relacionadas
	IV.1 Teste de Q de Cochran
	IV.2 Teste de Friedman
	Anexo V: Caso de k amostras independentes
	V.1 Teste de Kruskal-Wallis
	Anexo VI: Medidas de Correlação.
	VI.1 Coeficiente de correlação por postos de Kendall:
	VI.2 Coeficiente de correlação por postos de Spearman:
	VI.3 Coeficiente de concordância de Kendall:
	Tabelas
	Tabela A
	Tabela B
	Tabela C
	Tabela D
	Tabela E
	Tabela F
	Tabela G
	Tabela J
	Tabela K
	Tabela N
	Tabela O
	Tabela P
	Tabela Q
	Tabela R

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?