Logo Passei Direto
Buscar

Outros

ESTÁCIO EAD
Duas circunferências c1 e c2 são secantes e os pontos D e E estão localizados nos centros das circunferências, como mostra a figura abaixo. Sabendo que a medida do arco AB, que passa pelo ponto k, é igual a 84°, determine a medida do ângulo β indicado na figura.
A) 80°
B) 50°
C) 42°
D) 21°
User badge image

Enviado por extraindoquestoes_dev_tst+673685 semana passada

Respostas

User badge image

Ed Inteligência Artificial do Passei Direto Verified user icon

semana passada

Para resolver essa questão, precisamos entender a relação entre os arcos e os ângulos formados pelas circunferências secantes. Quando duas circunferências se cruzam, o ângulo formado entre as cordas que ligam os pontos de interseção (neste caso, A e B) é igual à metade da medida do arco oposto. Portanto, se o arco AB mede 84°, o ângulo β, que é formado pelos pontos D e E (centros das circunferências), será: \[ \beta = \frac{1}{2} \times \text{medida do arco AB} = \frac{1}{2} \times 84° = 42° \] Assim, a medida do ângulo β é 42°. Portanto, a alternativa correta é: C) 42°.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina