Prévia do material em texto
Gradiente, Divergencia, Rotacional, Laplaciano Coordenadas Cartesianas (x,y, z) f = f(x, y, z) ; −→ G = Gxı̂+Gy ̂+Gzk̂ −→ ∇f = ∂f ∂x ı̂+ ∂f ∂y ̂+ ∂f ∂z k̂ −→ ∇ · −→ G = ∂Gx ∂x + ∂Gy ∂y + ∂Gz ∂z −→ ∇ × −→ G = ( ∂Gz ∂y − ∂Gy ∂z ) ı̂ + ( ∂Gx ∂z − ∂Gz ∂x ) ̂ + ( ∂Gy ∂x − ∂Gx ∂y ) k̂ ∇2f = ∂ 2f ∂x2 + ∂2f ∂y2 + ∂2f ∂z2 Coordenadas Ciĺındricas (ρ,φ, z) f = f(ρ, φ, z) ; −→ G = Gρρ̂+Gφφ̂+Gz ẑ −→ ∇f = ∂f ∂ρ ρ̂+ 1 ρ ∂f ∂φ φ̂+ ∂f ∂z ẑ −→ ∇ · −→ G = 1 ρ ∂ ∂ρ (ρGρ) + 1 ρ ∂Gφ ∂φ + ∂Gz ∂z −→ ∇ × −→ G = ( 1 ρ ∂Gz ∂φ − ∂Gφ ∂z ) ρ̂ + ( ∂Gρ ∂z − ∂Gz ∂ρ ) φ̂ + 1 ρ ( ∂ ∂ρ (ρGφ)− ∂Gρ ∂φ ) ẑ ∇2f = 1 ρ ∂ ∂ρ ( ρ ∂f ∂ρ ) + 1 ρ2 ∂2f ∂φ2 + ∂2f ∂z2 1 Coordenadas Esféricas (r,θ,φ) f = f(r, θ, φ) ; −→ G = Grr̂ +Gθθ̂ +Gφφ̂ −→ ∇f = ∂f ∂r r̂ + 1 r ∂f ∂θ θ̂ + 1 r sen θ ∂f ∂φ φ̂ −→ ∇ · −→ G = 1 r2 ∂ ∂r ( r2Gr ) + 1 r sen θ ∂ ∂θ (sen θ Gθ) + 1 r sen θ ∂Gφ ∂φ −→ ∇ × −→ G = 1 r sen θ [ ∂ ∂θ (sen θ Gφ)− ∂Gθ ∂φ ] r̂ + [ 1 r sen θ ∂Gr ∂φ − 1 r ∂ ∂r (r Gφ) ] θ̂ + 1 r [ ∂ ∂r (r Gθ)− ∂Gr ∂θ ] φ̂ ∇2f = 1 r2 ∂ ∂r ( r2 ∂f ∂r ) + 1 r2 sen θ ∂ ∂θ ( sen θ ∂f ∂θ ) + 1 r2 sen 2θ ∂2f ∂φ2 2